Article:Math.QA/0206303/unidentified-references
From Knot Atlas
Jump to navigationJump to search
\let\olditem
\def
#1]#2{\olditem{#2}}
{\bf Lowell Abrams}, {\it Two-dimensional topological quantum field theories and Frobenius algebras}, J. Knot Theory Ramifications 5 (1996) 569--587 \MR{1414088}
{\bf Dror Bar-Natan}, {\it On Khovanov's categorification of the Jones polynomial}, \agtref2{2002}{16}{337}{370} \MR{1917056}
{\bf John Baez}, {\bf Laurel Langford}, {\it Higher-dimensional algebra IV: 2-Tangles}, Adv. Math. 180 (2003) 705--764 \MR{2020556}
{\bf J Scott Carter, Masahico Saito}, {\it Reidemeister moves for surface isotopies and their interpretations as moves to movies}, J. Knot Theory Ramifications 2 (1993) 251--284 \MR{1238875}
{\bf J Scott Carter, Daniel Jelsovsky, Seiichi Kamada, Laurel Langford, Masahico Saito}, {\it Quandle cohomology and state-sum invariants of knotted curves and surfaces}, Trans. Amer. Math. Soc. 355 (2003) 3947--3989 \MR{1990571}
{\bf J Scott Carter, Joachim H Rieger, Masahico Saito}, {\it A combinatorial description of knotted surfaces and their isotopies}, Adv. Math. 127 (1997) 1--51 \MR{1445361}
{\bf Vaughan F\,R Jones}, {\it A polynomial invariant for knots via Von Neumann algebras}, Bull. Amer. Math. Soc. 12 (1985) 103--111 \MR{0766964}
{\bf Mikhail Khovanov}, {\it A categorification of the Jones polynomial}, Duke Math. J. 101 (1999) 359--426 \MR{1740682}
{\bf Louis H Kauffman}, {\it State models and the Jones polynomial}, Topology 26 (1987) 395--407 \MR{0899057}
{\bf Dennis Roseman}, {\it Reidemeister-type moves for surfaces in four dimensional space}, in Banach Center Publications {\bf 42}, Knot Theory (1998), 347--380 \MR{1634466}
{\bf Olof-Petter \"Ostlund}, personal communication