Article:Math.SG/0101206/unidentified-references

From Knot Atlas
< Article:Math.SG/0101206
Revision as of 02:19, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 L.~V. Ahlfors. \newblock {\em Conformal invariants: topics in geometric function theory}. \newblock McGraw-Hill, 1973.  

 M.~F. Atiyah. \newblock {\em $K$-theory}. \newblock Advanced Book Classics. Addison-Wesley Publishing Company, 1989. \newblock Notes by {D}. {W}. {A}nderson.  

 M.~F. Atiyah, V.~K. Patodi, and I.~M. Singer. \newblock Spectral asymmetry and {R}iemannian geometry, {I}. \newblock {\em Math. Proc. Camb. Phil. Soc.}, 77:43--69, 1975.  

 V.~de~Silva. \newblock {\em Products in the symplectic {F}loer homology of {L}agrangian   intersections}. \newblock PhD thesis, Oxford University, 1999.  

 S.~K. Donaldson and P.~B. Kronheimer. \newblock {\em The Geometry of Four-Manifolds}. \newblock Oxford Mathematical Monographs. Oxford University Press, 1990.  


 A.~Floer. \newblock Morse theory for {L}agrangian intersections. \newblock {\em J. Differential Geometry}, 28:513--547, 1988.  

 A.~Floer. \newblock A relative {M}orse index for the symplectic action. \newblock {\em Comm. Pure Appl. Math.}, 41(4):393--407, 1988.  

 A.~Floer. \newblock The unregularized gradient flow of the symplectic action. \newblock {\em Comm. Pure Appl. Math.}, 41(6):775--813, 1988.  

 A.~Floer and H.~Hofer. \newblock Coherent orientations for periodic orbit problems in symplectic   geometry. \newblock {\em Math. Z.}, 212(1):13--38, 1993.  

 A.~Floer, H.~Hofer, and D.~Salamon. \newblock Transversality in elliptic {M}orse theory for the symplectic action. \newblock {\em Duke Math. J}, 80(1):251--29, 1995.  

 K.~Fukaya, Y-G. Oh, K.~Ono, and H.~Ohta. \newblock {\em Lagrangian intersection Floer theory---anomaly and obstruction}. \newblock Kyoto University, 2000.  

 R.~E. Gompf and A.~I. Stipsicz. \newblock {\em {$4$}-manifolds and Kirby calculus}, volume~20 of {\em Graduate   Studies in Mathematics}. \newblock American Mathematical Society, 1999.  

 M.~Gromov. \newblock Pseudo holomorphic curves in symplectic manifolds. \newblock {\em Invent. Math.}, 82:307--347, 1985.  

 J.~Harris. \newblock {\em Algebraic Geometry: a first course}. \newblock Number 133 in Graduate Texts in Mathematics. Springer-Verlag, 1995.  

 R.~Hartshorne. \newblock {\em Algebraic Geometry}. \newblock Number~52 in Graduate Texts in Mathematics. Springer-Verlag, 1977.  

 A.~Hattori. \newblock Topology of {$\C^n$} minus a finite number of affine hyperplanes in   general position. \newblock {\em J. Fac. Sci. Univ. Tokyo}, 22(2):205--219, 1975.  


 P.~B. Kronheimer and T.~S. Mrowka. \newblock Monopoles and contact structures. \newblock {\em Invent. Math.}, 130(2):209--255, 1997.  

 A-M. Li and Y.~Ruan. \newblock Symplectic surgery and {G}romov-{W}itten invariants of {C}alabi-{Y}au   3-folds. \newblock {\em Invent. Math.}, 145(1):151--218, 2001.  

 G.~Liu. \newblock Associativity of quantum multiplication. \newblock {\em Comm. Math. Phys.}, 191(2):265--282, 1998.  

 I.~G. MacDonald. \newblock Symmetric products of an algebraic curve. \newblock {\em Topology}, 1:319--343, 1962.  

 D.~McDuff and D.~Salamon. \newblock {\em {$J$}-holomorphic curves and quantum cohomology}. \newblock Number~6 in University Lecture Series. American Mathematical Society,   1994.  

 T.~S. Mrowka. \newblock A local {M}ayer-{V}ietoris principle for the {Y}ang-{M}ills moduli   space. \newblock Berkeley Ph.D. Thesis, 1989.  

 Y-G. Oh. \newblock Fredholm theory of holomorphic discs under the perturbation of   boundary conditions. \newblock {\em Math. Z}, 222(3):505--520, 1996.  

 Y-G. Oh. \newblock On the structure of pseudo-holomorphic discs with totally real   boundary conditions. \newblock {\em J. Geom. Anal.}, 7(2):305--327, 1997.  

 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Absolutely graded {F}loer homologies and intersection forms for   four-manifolds with boundary. \newblock To appear in {\em Adv. Math.}, math/0110170, 2001.  


 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Holomorphic triangles and invariants for smooth four-manifolds. \newblock math/0110169, 2001.  

 T.~H. Parker and J.~G. Wolfson. \newblock Pseudo-holomorphic maps and bubble trees. \newblock {\em J. Geom. Anal.}, 3(1):63--98, 1993.  

 K.~Reidemeister. \newblock Zur dreidimensionalen {T}opologie. \newblock {\em Abh. Math. Sem. Univ. Hamburg}, (9):189--194, 1933.  

 J.~Robbin and D.~Salamon. \newblock The spectral flow and the {M}aslov index. \newblock {\em Bull. London Math. Soc.}, 27(1):1--33, 1995.  

 D.~Salamon and E.~Zehnder. \newblock Morse theory for periodic solutions of {H}amiltonian systems and the   {M}aslov index. \newblock {\em Comm. Pure Appl. Math.}, 45(10):1303--1360, 1992.  


 J.~Singer. \newblock Three-dimensional manifolds and their {H}eegaard diagrams. \newblock {\em Trans. Amer. Math. Soc.}, 35(1):88--111, 1933.  

 C.~H. Taubes. \newblock {\em Metrics, connections and gluing theorems}. \newblock Number~89 in CBMS Regional Conference Series in Mathematics. AMS,   1996.  

 G.~Tian. \newblock Quantum cohomology and its associativity. \newblock In R.~Bott, M.~Hopkins, A.~Jaffe, I.~Singer, D.~Stroock, and S-T.   Yau, editors, {\em Current Developments in Mathematics, 1995}, pages   361--401. Internat. Press, 1994.  

 V.~Turaev. \newblock Torsion invariants of {S}pin{$^c$}-structures on $3$-manifolds. \newblock {\em Math. Research Letters}, 4:679--695, 1997.  

 C.~Viterbo. \newblock Intersection de sous-vari{\'e}t{\'e}s lagrangiennes, fonctionnelles   d'action et indice des syst{\`e}mes hamiltoniens. \newblock {\em Bull. Soc. Math. France}, 115(3):361--390, 1987.  

 R.~Ye. \newblock Gromov's compactness theorem for pseudo holomorphic curves. \newblock {\em Trans. Amer. Math. Soc.}, 342(2):671--694, 1994.  

 H.~Zieschang. \newblock On {H}eegaard diagrams of {$3$}-manifolds. \newblock In {\em On the Geometry of Differentiable Manifolds}, volume 163-164,   pages 247--280. Ast{\'e}risque, 1988.