Article:Math.SG/0105202/unidentified-references

From Knot Atlas
< Article:Math.SG/0105202
Revision as of 02:20, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 M.~F. Atiyah. \newblock {\em Floer homology}, pages 105--108. \newblock Number 133 in Progr. Math. Birkh{\"a}user, 1995.  

 D.~Auckly. \newblock The {T}hurston norm and three-dimensional {S}eiberg-{W}itten theory. \newblock {\em Osaka J. Math}, 33(3):737--750, 1996.  

 D.~M. Austin and P.~J. Braam. \newblock Morse-{B}ott theory and equivariant cohomology. \newblock In H.~Hofer, C.~H. Taubes, A.~Weinstein, and E.~Zehnder, editors,   {\em The Floer Memorial Volume}, number 133 in Progress in Mathematics, pages   123--183. Birkh{\"a}user, 1995.  

 P.~Braam and S.~K. Donaldson. \newblock Floer's work on instanton homology, knots, and surgery. \newblock In H.~Hofer, C.~H. Taubes, A.~Weinstein, and E.~Zehnder, editors,   {\em The Floer Memorial Volume}, number 133 in Progress in Mathematics, pages   195--256. Birkh{\"a}user, 1995.  

 H.~Cartan and S.~Eilenberg. \newblock {\em Homological algebra}. \newblock Princeton University Press, 1956.  

 M.~Culler, C.~McA. Gordon, J.~Luecke, and P.~B. Shalen. \newblock Dehn surgery on knots. \newblock {\em Ann. of Math}, 125(2):237--300, 1987.  

 S.~Dostoglou and D.~Salamon. \newblock Self-dual instantons and holomorphic curves. \newblock {\em Ann. of Math.}, 2(139):581--640, 1994.  

 R.~Fintushel and R.~J. Stern. \newblock Integer graded instanton homology groups for homology three-spheres. \newblock {\em Topology}, 31(3):589--604, 1992.  

 A.~Floer. \newblock An instanton-invariant for 3-manifolds. \newblock {\em Comm. Math. Phys.}, 119:215--240, 1988.  

 A.~Floer. \newblock Instanton homology and {D}ehn surgery. \newblock In H.~Hofer, C.~H. Taubes, A.~Weinstein, and E.~Zehnder, editors,   {\em The Floer Memorial Volume}, number 133 in Progress in Mathematics, pages   77--97. Birkh{\"a}user, 1995.  

 K.~A. Fr{\o}yshov. \newblock The {S}eiberg-{W}itten equations and four-manifolds with boundary. \newblock {\em Math. Res. Lett}, 3:373--390, 1996.  

 R.~E. Gompf and A.~I. Stipsicz. \newblock {\em {$4$}-manifolds and Kirby calculus}, volume~20 of {\em Graduate   Studies in Mathematics}. \newblock American Mathematical Society, 1999.  

 C.~McA. Gordon and J.~Luecke. \newblock Knots are determined by their complements. \newblock {\em J. Amer. Math. Soc.}, 2(2):371--415, 1989.  

 C.~McA. Gordon and J.~Luecke. \newblock Knots are determined by their complements. \newblock {\em Bull. Amer. Math. Soc. (N.S.)}, 20(1):83--87, 1989.  

 M.~Hutchings and Y-J. Lee. \newblock Circle-valued {M}orse theory, {R}eidemeister torsion, and   {S}eiberg-{W}itten invariants of {$3$}-manifolds. \newblock {\em Topology}, 38(4):861--888, 1999.  

 P.~B. Kronheimer and T.~S. Mrowka, 1996. \newblock I.P. Lecture.  

 P.~B. Kronheimer and T.~S. Mrowka. \newblock Scalar curvature and the {T}hurston norm. \newblock {\em Math. Res. Lett.}, 4(6):931--937, 1997.  

 P.~B. Kronheimer, T.~S. Mrowka, and P.~S. Ozsv{\'a}th. \newblock Dirac operators, holomorphic euler characteristics, and lattice   points. \newblock 1997.  





 G.~Meng and C.~H. Taubes. \newblock {\underline{SW}}={M}ilnor torsion. \newblock {\em Math. Research Letters}, 3:661--674, 1996.  

 J.~Milnor. \newblock {\em Lectures on the {$h$}-cobordism theorem}. \newblock Princeton University Press, 1965. \newblock Notes by L. Siebenmann and J. Sondow.  

 T.~S. Mrowka, P.~S. Ozsv{\'a}th, and B.~Yu. \newblock Seiberg-{W}itten monopoles on {S}eifert fibered spaces. \newblock {\em Comm. in Analysis and Geometry}, 5(4):685--793, 1997.  

 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Higher type adjunction inequalities in {S}eiberg-{W}itten theory. \newblock {\em J. Differential Geometry}, 55:385--440, 2000.  


 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock On embedding circle-bundles in four-manifolds. \newblock {\em Math. Res. Lett.}, 7(5-6):657--669, 2000.  


 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Absolutely graded {F}loer homologies and intersection forms for   four-manifolds with boundary. \newblock math/0110170, 2001.  

 P.~S. Ozsv{\'a}th and Z.~Szab{\'o}. \newblock Holomorphic triangles and invariants for smooth four-manifolds. \newblock math/0110169, 2001.  

 D.~Salamon. \newblock {\em Lagrangian intersections, {$3$}-manifolds with boundary, and the   Atiyah-Floer conjecture}, pages 526--536. \newblock Birkh{\"a}user, 1994.  

 C.~H. Taubes. \newblock ${{\rm{SW}}}\rightarrow{{\rm{Gr}}}$: from the {S}eiberg-{W}itten   equations to pseudo-holomorphic curves. \newblock {\em J. Amer. Math. Soc.}, 9(3):845--918, 1996.  

 C.~H. Taubes. \newblock The geometry of the {S}eiberg-{W}itten invariants. \newblock In {\em Proceedings of the International Congress of Mathematicians,   Vol. II}, pages 493--504, 1998.  

 W.~P. Thurston. \newblock {\em A norm for the homology of {$3$}-manifolds}, volume~59 of {\em   Mem. Amer. Math. Soc.}, pages i--vi and 99--130. \newblock 1986.  

 V.~Turaev. \newblock Torsion invariants of {S}pin{$^c$}-structures on $3$-manifolds. \newblock {\em Math. Research Letters}, 4:679--695, 1997.  

 V.~Turaev. \newblock A combinatorial formulation for the {S}eiberg-{W}itten invariants of   3-manifolds. \newblock {\em Math. Research Letters}, 5(5):583--598, 1998.  

 E.~Witten. \newblock Monopoles and four-manifolds. \newblock {\em Math. Research Letters}, 1:769--796, 1994.