Article:Math.DG/0202178/unidentified-references

From Knot Atlas
< Article:Math.DG/0202178
Revision as of 03:46, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 M.F. Atiyah, V.K. Patodi, and I.M. Singer, \emph{Spectral asymmetry and   {Riemannian} geometry: {I}}, Math.\ Proc.\ Camb.\ Phil.\ Soc. \textbf{77}   (1975), 43--69.  

 Kim Fr{\o}yshov, \emph{The {S}eiberg-{W}itten equations and four-manifolds with boundary},    {Math. Res. Lett.},     \textbf{3} (1996), no.~3, 373--390.  

 Mikio Furuta, \emph{Monopole equation and the $\frac{11}{8}$-conjecture},   Preprint.  

 P.~Gilmer, \emph{Configurations of surfaces in 4-manifolds}, Trans.\ A.M.S.   \textbf{264} (1981), 353--380.  

 Mutsumi Komuro, \emph{On {A}tiyah-{P}atodi-{S}inger $\eta $-invariant for   ${S}\sp{1}$-bundles over {R}iemann surfaces}, J. Fac. Sci. Univ. Tokyo Sect.   IA Math. \textbf{30} (1984), no.~3, 525--548.  

 P.B. Kronheimer and T.S. Mrowka, \emph{The genus of embedded surfaces in the   projective plane}, Math.\ Res.\ Lett. \textbf{1} (1994), no.~6, 797--808.  

 Bang-He Li, \emph{Representing nonnegative homology classes of {${\bf C}{\rm               P}\sp 2\#n\overline{{\bf C}{\rm P}}\,\sp 2$} by minimal genus               smooth embeddings}, Trans. Amer. Math. Soc. \textbf{352} (2000), no.~9, 4155--4169.  

 Bang-He Li and Tian-Jun Li,  \emph{Minimal genus smooth embeddings in ${S}\sp 2\times {S}\sp 2$ and \hbox{${\mathbf {CP}}^2\#n\overline{{\mathbf {CP}}}^2$} with $n\leq8$},   Topology \textbf{37} (1998), no.~3, 575--594.  


 R.B. Lockart and R.C. McOwen, \emph{Elliptic differential operators on   non--compact manifolds}, Annali d. Scuola Norm. Sup. de Pisa (1985),   409--448.  

 Robert Lockhart, \emph{Fredholm, {H}odge and {L}iouville theorems on noncompact   manifolds}, Trans. Amer. Math. Soc. \textbf{301} (1987), no.~1, 1--35.  

 J.~Morgan, T.~Mrowka, and D.~Ruberman, \emph{The ${L}^2$-moduli space and a   vanishing theorem for {Donaldson} invariants}, Monographs in Geometry and   Topology, vol.~2, International Press, 1994.  

 J.~Morgan, Z.~Szabo, and C.~Taubes, \emph{A product formula for the   {Seiberg--Witten} invariants and the generalized {Thom} conjecture}, J.   Diff.\ Geo. \textbf{44} (1996), 706--788.  

 John~W. Morgan, \emph{The {S}eiberg-{W}itten equations and applications to the   topology of smooth four-manifolds}, Mathematical Notes, vol.~44, Princeton   University Press, Princeton, NJ, 1996.  

 Tomasz Mrowka, Peter Ozsv{\'a}th, and Baozhen Yu, \emph{Seiberg-{W}itten   monopoles on {S}eifert fibered spaces}, Comm. Anal. Geom. \textbf{5} (1997),   no.~4, 685--791.  

 D.~Mumford, \emph{An algebraic surface with ${K}$\ ample, $({K}\sp{2})=9$,   $p\sb{g}=q=0$}, Amer. J. Math. \textbf{101} (1979), no.~1, 233--244.  

 Liviu~I. Nicolaescu, \emph{Eta invariants of {D}irac operators on circle   bundles over {R}iemann surfaces and virtual dimensions of finite energy   {S}eiberg-{W}itten moduli spaces}, Israel J. Math. \textbf{114} (1999),   61--123.  

 Peter Ozsv{\'a}th and Zolt{\'a}n Szab{\'o}, \emph{The symplectic {T}hom   conjecture}, Ann. of Math. (2) \textbf{151} (2000), no.~1, 93--124.  

 V.A. Rohlin, \emph{Two--dimensional submanifolds of four dimensional   manifolds}, Functional Anal. and Appl. \textbf{5} (1971), 39--48.  

 D.~Ruberman, \emph{The minimal genus of an embedded surface of non-negative   square in a rational surface}, Turkish J.\ Math. \textbf{20} (1996),   129--135.  

 D.~Salamon, \emph{Spin geometry and {S}eiberg-{W}itten invariants}, Preliminary   version.  

 Clifford~Henry Taubes, \emph{The {S}eiberg-{W}itten invariants and symplectic   forms}, Math. Res. Lett. \textbf{1} (1994), no.~6, 809--822.  

 C.~T.~C. Wall, \emph{Diffeomorphisms of 4-manifolds}, Jour.\ Lond.\ Math.\ Soc.   \textbf{39} (1964), 131--140.