Article:Math.SG/0203265/unidentified-references

From Knot Atlas
< Article:Math.SG/0203265
Revision as of 04:26, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 \textbf{S\,K Donaldson}, \emph{Floer homology groups in {Y}ang-{M}ills theory},   volume 147 of \emph{Cambridge Tracts in Mathematics}, Cambridge University   Press (2002), with the assistance of M Furuta and D Kotschick  

 \textbf{N\,D Elkies}, \emph{A characterization of the {${Z}\sp n$} lattice},   Math. Res. Lett. 2 (1995) 321--326  

 \textbf{R Fintushel}, \textbf{R\,J Stern}, \emph{Instanton homology of   {S}eifert fibered homology three spheres}, Proc. of the London Math. Soc. 61   (1990) 109--137  

 \textbf{K\,A Fr{\o}yshov}, \emph{The {S}eiberg-{W}itten equations and   four-manifolds with boundary}, Math. Res. Lett 3 (1996) 373--390  


 \textbf{R\,E Gompf}, \textbf{A\,I Stipsicz}, \emph{{$4$}-manifolds and Kirby   calculus}, volume~20 of \emph{Graduate Studies in Mathematics}, American   Mathematical Society (1999)  

 \textbf{P\,A Kirk}, \textbf{E\,P Klassen}, \emph{Representation spaces of   {S}eifert fibered homology spheres}, Topology 30 (1991) 77--95  

 \textbf{P\,B Kronheimer}, \textbf{T\,S Mrowka}, \emph{The genus of embedded   surfaces in the projective plane}, Math. Research Letters 1 (1994) 797--808  

 \textbf{J\,W Morgan}, \emph{The {S}eiberg-{W}itten Equations and Applications   to the Topology of Smooth Four-Manifold}, Mathematical Notes 44, Princeton   University Press (1996)  

 \textbf{T\,S Mrowka}, \textbf{P\,S Ozsv{\'a}th}, \textbf{B Yu},   \emph{Seiberg-{W}itten Monopoles on {S}eifert Fibered Spaces}, Comm. in   Analysis and Geometry 5 (1997) 685--793  





 \textbf{P\,S Ozsv{\'a}th}, \textbf{Z Szab{\'o}}, \emph{Absolutely graded   {F}loer homologies and intersection forms for four-manifolds with boundary},   Advances in Mathematics 173 (2003) 179--261  


 \textbf{E Witten}, \emph{Monopoles and Four-Manifolds}, Math. Research Letters   1 (1994) 769--796