Article:Math.AG/9811159/unidentified-references
From Knot Atlas
Jump to navigationJump to search
{M. Atiyah, G. Segal, ``On equivariant Euler characteristics," J. Geom. Phys. {\bf 6} no. 4 (1989), 671-677.} {D. Barlet, {\em Espace analytique r\'eduit des cycles analytiques complexes compacts d'un espace analytique complexe de dimension finie}, Lecture Notes in Mathematics {\bf 482}, SPringer, Berlin, 1975. } {P. Baum, A. Connes, ``Chern Character for finite groups," in Y. Matsumoto et. al. (eds.), A fete of Topology, Academic Press, 1988.} % {A. Beauville, ``Vari\'et\'es K\"ahleriennes %dont la premi\`ere %classe de Chern est nulle," J. Differential Geom. {\bf 18} (1983), no. %4 (1984), 755-782} {A.A. Beilinson, J.N. Deligne, P. Deligne, {\em Faisceaux pervers}, Ast\'erisque {\bf 100}, Paris, Soc. Math. Fr. 1982.} {R. Bezrukavnikov, V. Ginzburg, ``Hilbert schemes and reductive groups," preprint.} % {W. Borho, R. MacPherson, ``Partial resolutions of nilpotent %varieties," Ast\'erisque {\bf 101-102} (1983), 23-74.} {J. Brian\c{c}on, ``Description de $Hilb^nC\{x,y\}$, " Invent. Math. {\bf 41} (1977), 45-89. } {J. Cheah, ``The Hodge numbers of the Hilbert scheme of points of a smooth projective surface," J. Algebraic Geometry {\bf 5} (1996), 479-511.} {M.A. de Cataldo, ``Hilbert schemes of surfaces and Euler characteristics," AG/9811150.} {A. Douady, ``Le probl\`eme des modules pour les sous-espaces analytiques d'un espace analytique donn\'e," Ann. Inst. Fourier {\bf 16}-1 (1966), 1-95.} {G. Ellingsrud, S.A. Stromme, ``On the homology of the Hilbert scheme of points in the plane," Invent. Math. {\bf 87} (1987) 343-352.} {G. Ellingsrud, S.A. Stromme, ``On a cell decomposition of the Hilbert scheme of points in the plane," Invent. Math. {\bf 91} (1988) 365-370.} {G. Ellingsrud, S.A. Stromme, ``An intersection number for the punctual Hilbert scheme of a surface," Trans. Amer. Math. Soc. {\bf 350} (1998), no.6, 2547-2552.} {G. Fischer, {\em Complex analytic geometry}, Lecture Notes in Mathematics, Vol. {\bf 538}, Springer-Verlag, Berlin-New York, 1976} {J. Fogarty, ``Algebraic families on an algebraic surface," American Journal of Math. {\bf 90} (1968), 511-521.} % {A. Fujiki, ``, " Publ. RIMS {\bf 14} ???.} {W. Fulton, {\em Intersection Theory}, Ergebnisse der Mathematik, 3.folge. Band 2, Springer-Verlag, Berlin Heidelberg 1984.} {L. G\"ottsche, {\em Hilbert schemes of zero-dimensional subschemes of smooth varieties}, LNM 1572, Springer-Verlag Berlin 1994. } {L. G\"ottsche, W. Soergel, ``Perverse sheaves and the cohomology of the Hilbert schemes of smooth algebraic surfaces," Math. Ann. {\bf 296} (1993), 235-245.} {L. Grojnowski, ``Instantons and affine algebras, I. The Hilbert scheme and vertex operators," Math. Res. Letters {\bf 3} (1996), no. 2, 275-291} {R. Hartshorne, {\em Algebraic Geometry}, GTM {\bf 52}, Springer Verlag, Berlin-Heidelberg-New York, 1977.} {F. Hirzebruch, T. H\"ofer, ``On the Euler number of an orbifold," Math. Ann {\bf 286} (1990), 255-260.} {A. Iarrobino, {\em Punctual Hilbert schemes}," Mem. Amer. Math. Soc. {\bf 188}, 1977.} {A. Iarrobino, ``Deforming complete intersection Artin algebras. Appendix: Hilbert function of ${C}[x,\,y]/I$," Singularities, Part 1 (Arcata, Calif., 1981), 593--608, Proc. Sympos. Pure Math., {\bf 40}, Amer. Math. Soc., Providence, R.I., 1983.} {A. Iarrobino, ``Hilbert scheme of points: overview of last ten years," Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), 297--320, Proc. Sympos. Pure Math., {\bf 46}, Part 2, Amer. Math. Soc., Providence, RI, 1987.} {B. Iversen, ``Linear determinants with applications to the Picard scheme of a family of algebraic curves," Springer Lecture Notes {\bf 174}, Berlin 1970} {V.G. Kac, {\em Infinite dimensional Lie algebras}, 3rd edition Cambridge University Press 1990.} {M. Lehn, ``Chern classes of tautological sheaves on Hilbert schemes of points on a surface," preprint.} {H. Nakajima, ``Heisenberg algebra and Hilbert schemes of points on projective surfaces," Ann. of Math. (2) {\bf 145} (1997), no.2, 379-388.} {H. Nakajima, ``Lectures on Hilbert schemes of points on surfaces," preprint.} {M. Saito, ``Decomposition theorem for proper Kähler morphisms," Tohoku Math. J. (2) {\bf 42}, no. 2, (1990), 127--147.} {G. Segal, ``Equivariant $K$-theory and symmetric products," Lecture at Cambridge, July 1996.} {K. Ueno, ``Introduction to the theory of compact complex spaces in the class ${\cal C}$," {\em Algebraic varieties and analytic varieties}, 219--230, Adv.Stud.Pure Math., 1, North-Holland, New York, 1983. } {Vafa, E. Witten, ``A strong coupling test for S-duality," Nucl. Phys. {\bf 431} (1994), 3-77.} {W. Wang, ``Equivariant K-theory and wreath product," M.P.I. Preprint Series {\bf 86} (1998).} {H. Weyl, {\em The Classical Groups, their Invariants and Representations} 2nd edition, Princeton University Press, Princeton NJ, 1949}