Article:Math.QA/9907151/unidentified-references

From Knot Atlas
< Article:Math.QA/9907151
Revision as of 04:36, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 M. Atiyah, {\em Power operations in K-theory}, Quart. J. Math. Oxford {\bf 17} (1966) 165--193.  

 M. Atiyah, {\em K-Theory}, Benjamin, New York, 1967.  

 M. Atiyah and G. Segal, {\em On equivariant Euler characteristics}, J. Geom. Phys. {\bf 6} (1989) 671--677.  

 P. Baum, J. Brylinski and R. MacPherson, {\em Cohomologie \'equivariante d\'elocalis\'ee}, C.R. Acad. Sci. Paris {\bf 300} (1985) 605--608.  

 P. Baum and A. Connes, {\em Chern character for discrete groups}, In: Y.~Matsumoto et al (eds.), A Fete of Topology, Academic Press, 1988.  

 R. Bezrukavnikov and V. Ginzburg, {\em Hilbert schemes and reductive groups}, unpublished notes.  

 R. Borcherds, {\em Vertex algebras, Kac-Moody algebras, and the Monster}, Proc. Natl. Acad. Sci, USA {\bf 83} (1986) 3068--3071.  


 L. Dixon, J. Harvey, C. Vafa and E. Witten, {\em Strings on orbifolds. I.} Nucl. Phys. {\bf B 261} (1985) 678--686.  

 I. Frenkel, J. Lepowsky and A. Meurman, {\em Vertex operator algebras and the Monster}, Academic Press, New York 1988.  

 L. G\"ottsche, {\em The Betti numbers of the Hilbert scheme of points on a smooth projective surface}, Math. Ann. {\bf 286} (1990) 193--207.  

 I. Grojnowski, {\em Instantons and affine algebras I: the Hilbert scheme and vertex operators}, Math. Res. Lett. {\bf 3} (1996) 275--291.  

 F. Hirzebruch and T. H\"ofer, {\em On the Euler number of an orbifold}, Math. Ann. {\bf 286} (1990) 255--260.  

 I. Macdonald, {\em The Poincare polynomial of a symmetric product}, Proc. Camb. Phil. Soc. {\bf 58} (1962) 563--568.  

 I. Macdonald, {\em Polynomial functors and wreath products}, J. Pure Appl. Algebra, {\bf 18} (1980) 173--204.  

 I. Macdonald, {\em Symmetric Functions and Hall Polynomials}, Second Edition, Oxford, Clarendon Press, 1995.  

 J. McKay, {\em Graphs, singularities and finite groups}, Proc. Sympos. Pure Math. {\bf 37}, AMS (1980) 183--186.  

 H. Nakajima, {\em Lectures on Hilbert schemes of points on surfaces}, 1996, http://www.kusm,kyoto-u.ac.jp/~nakajima/TeX.html.  

 H. Nakajima, {\em Heisenberg algebra and Hilbert schemes of points on projective surfaces}, Ann. Math, {\bf 145} (1997) 379--388.  

 G. Segal, {\em Equivariant K-theory}, Publ. Math. IHES, {\bf 34} (1968) 129--151.  

 G. Segal, {\em Equivariant K-theory and symmetric products}, preprint 1996 (unpublished).  

 J.-P. Serre, {\em Linear representations of finite groups}, Grad. Texts in Math. {\bf 42}, Springer-Verlag.  

 C. Vafa and E. Witten, {\em A strong coupling test of $S$-duality}, Nucl. Phys. {\bf B 431} (1994) 3--77.  

 A. Zelevinsky, {\em Representations of finite classical groups}, Lect. Note in Math. {\bf 869}, Springer-Verlag.