Article:Math.DG/9803083/unidentified-references

From Knot Atlas
< Article:Math.DG/9803083
Revision as of 04:39, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 V.~I. Arnol'd, \emph{Some remarks on symplectic monodromy of {M}ilnor   fibrations}, The {F}loer Memorial Volume (H.~Hofer, C.~Taubes, A.~Weinstein,   and E.~Zehnder, eds.), Progress in Mathematics, vol. 133, Birkh{\"a}user,   1995, pp.~99--104.  

 D.~Austin and P.~Braam, \emph{{M}orse-{B}ott theory and equivariant   cohomology}, The {F}loer Memorial Volume (H.~Hofer, C.~Taubes, A.~Weinstein,   and E.~Zehnder, eds.), Progress in Mathematics, vol. 133, Birkh{\"a}user,   1995, pp.~123--183.  

 E.~Brieskorn, \emph{{\"U}ber die {A}ufl{\"o}sung gewisser {S}ingularit{\"a}ten   von holomorphen {A}bbildungen}, Math. Ann. \textbf{166} (1966), 76--102.  

 Ya. Eliashberg and L.~Polterovich, \emph{The problem of {L}agrangian knots in   four-manifolds}, Geometric {T}opology. Proceedings of the 1993 {G}eorgia   {I}nternational {T}opology {C}onference (W.~H. Kazez, ed.), International   Press, 1997, pp.~313--327.  

 A.~Floer, \emph{Morse theory for {L}agrangian intersections}, J. Differential   Geom. \textbf{28} (1988), 513--547.  

 \bysame, \emph{A relative {M}orse index for the symplectic action}, Comm. Pure   Appl. Math. \textbf{41} (1988), 393--407.  

 \bysame, \emph{Witten's complex and infinite dimensional {M}orse theory}, J.   Differential Geom. \textbf{30} (1989), 207--221.  

 A.~Floer, H.~Hofer, and D.~Salamon, \emph{Transversality in elliptic {M}orse   theory for the symplectic action}, Duke Math. J. \textbf{80} (1995),   251--292.  

 P.~Kronheimer, \emph{Some non-trivial families of symplectic structures},   Preprint, 1997.  

 Y.-G. Oh, \emph{On the structure of pseudo-holomorphic discs with totally real   boundary conditions}, Preprint (revised version, May 1996).  

 \bysame, \emph{Floer cohomology of {L}agrangian intersections and   pseudo-holomorphic discs {I}}, Comm. Pure Appl. Math. \textbf{46} (1993),   949--994.  

 \bysame, \emph{Floer cohomology, spectral sequences, and the {M}aslov class of   {L}agrangian embeddings}, Int. Math. Res. Notices (1996), 305--346.  

 L.~Polterovich, \emph{Surgery of {L}agrange submanifolds}, Geom. Funct. Anal.   \textbf{1} (1991), 198--210.  

 M.~Po{\'z}niak, \emph{Floer homology, {N}ovikov rings and clean intersections},   Ph.D. thesis, University of Warwick, 1994.  

 J.~Robbin and D.~Salamon, \emph{The {M}aslov index for paths}, Topology   \textbf{32} (1993), 827--844.  

 J.~Robbin and D.~Salamon, \emph{The spectral flow and the {M}aslov index}, Bull. London Math. Soc. \textbf{27} (1995), 1--33.  

 Y.~Ruan and G.~Tian, \emph{Bott-type symplectic {F}loer cohomology and its   multiplication structures}, Math. Research Letters \textbf{2} (1995),   203--219.  

 D.~Salamon and E.~Zehnder, \emph{Morse theory for periodic solutions of   {H}amiltonian systems and the {M}aslov index}, Comm. Pure Appl. Math.   \textbf{45} (1992), 1303--1360.  

 P.~Seidel, \emph{Floer homology and the symplectic isotopy problem}, Ph.D.   thesis, Oxford University, 1997.  

 \bysame, \emph{Symplectic automorphisms of {$T^*\!S^2$}}, Preprint, 1998.  

 C.~Viterbo, \emph{Intersection des sous-vari{\'e}t{\'e}s {L}agrangiennes,   fonctionelles d'action et indice des syst{\`e}mes {H}amiltoniens}, Bull. Soc.   Math. France \textbf{115} (1987), 361--390.