Article:Math.DG/9907065/unidentified-references

From Knot Atlas
< Article:Math.DG/9907065
Revision as of 04:43, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
    

 M.F. Atiyah, V.K. Patodi, I.M. Singer, {\em Spectral         asymmetry and Riemannian geometry}, I,II,III;         Math. Proc. Cambridge Phil. Soc. 77 (1975) 43-69; 78 (1975) 405-432;         79 (1976) 71-99.  %

 UCP 

  P.J. Braam, S.K.  Donaldson, {\em Floer's work on           instanton           homology, knots and surgery}, Floer Memorial Volume,              Progress in Mathematics, Vol. 133;  Birkh\"auser 1995.  

 S.E. Cappell, R. Lee, E.Y. Miller,           {\em Self-adjoint elliptic operators and manifold              decompositions. I:              Low eigenmodes and stretching}, Commun. Pure Appl. Math. 49,              No.8,              825-866 (1996).   

 S.E. Cappell, R. Lee, E.Y. Miller, {\em Self-adjoint             elliptic operators and             manifold decompositions. II: Spectral flow and Maslov             index}, Commun. Pure Appl. Math. 49, No.9, 869-909 (1996).  

 S.E. Cappell, R. Lee, E.Y. Miller, {\em On the       Maslov index}, Comm. Pure Appl. Math., Vol. XLVII (1994) 121-186.  

  A.L. Carey, J. McCarthy, B.L. Wang, R.B. Zhang,           {\em Seiberg-Witten Monopoles in Three Dimensions},           Lett. in Math. Phys., Vol. 39, 213-228, 1997; 

 A.L. Carey, B.L. Wang,  {\em Seiberg-Witten-Floer homology               and gluing formulae}, to appear.   


 M. Daniel, P.Kirk, with an appendix by     K.P. Wojciechowski, {\em A general splitting formula for the spectral     flow}, Michigan Math. J. 46 (1999), no. 3, 589-617.  %

 A. Floer, {\em The unregularized gradient flow of   %            the symplectic action}.  %           Comm. Pure Appl. Math. 41 (1988), no. 6, 775-813.  

 D. Freed, K. Uhlenbeck, {\em Instantons and 4-manifolds},             MSRI Lecture notes, Springer-Verlag, 1984.  

 K.A. Fr\/{o}yshov, {\em The Seiberg-Witten equations and          four-manifolds with boundary}, Math. Res. Lett. 3 (1996), N.3,          373-390;   

 P.B. Kronheimer, {\em Embedded surfaces and gauge theory              in three and four dimensions}, Surveys              in differential geometry, Vol. III (1996),              243-298, Int. Press, 1998.   

  P.B. Kronheimer, T.S.Mrowka, {\em The genus of               embedded surfaces in the projective plane,}               Math. Res. Lett. 1 (1994), 797-808.  

 P.B. Kronheimer, T.S.Mrowka, {\em Monopoles and                contact structures}. Inventiones Mathematicae,           130 (1997), no. 2, 209--255. 

 Y. Lim, {\em Seiberg-Witten moduli spaces          for 3-manifolds with cylindrical--end $T^2 \times \R^+$}.          Comm. in Comtemp. Math., Vol. 2, No. 4 (2000) 461-509. 

 Y. Lim, {\em Seiberg-Witten invariants for        $3$-manifolds in the case $b\sb 1=0$ or $1$}. Pacific        J. Math. 195 (2000), no. 1, 179--204. 

 R.B. Lockhard, R.C. Mc Owen {\em Elliptic operators on      non-compact manifolds}, Ann. Sci. Norm. Sup. Pisa, IV-12 (1985),      409-446.  

 M. Marcolli, {\em Seiberg-Witten-Floer Homology and         Heegaard Splittings} Intern. Jour. of Maths., Vol 7, No. 5 (1996)         671-696.  

 M. Marcolli, {\em Seiberg-Witten gauge theory}, Texts         and Readings in Mathematics, Vol. 17, Hindustan Book         Agency, New Delhi, 1999.  

 M. Marcolli, B.L. Wang {\em Equivariant              Seiberg-Witten-Floer homology},            Commun. Anal. Geom. Vol.9 N.3 (2001) 451--639.   

 G. Meng, C. H.  Taubes  {\em {\underline{SW}} = Milnor Torsion},            Math. Res. Lett. 3 (1996), no. 5, 661--674; 

 J.W. Morgan, {\em The Seiberg-Witten equations and         applications to the topology of smooth four-manifolds},         Princeton 1996.   

 J.W. Morgan, T.S. Mrowka and D. Ruberman,       {\em The $L^2$-moduli space and a vanishing theorem for Donaldson         polynomial Invariants,} Monographs in Geometry and Topology,         Vol 2,  1994.  

 J.W. Morgan, Z. Szabo and C.H. Taubes, {\em A product              formula for the Seiberg-Witten invariants and the              generalized Thom Conjecture}, J. Differential Geom. 44              (1996), no. 4, 706-788.    

 T.S. Mrowka, {\em A Mayer-Vietoris principle for                   Yang-Mills moduli spaces,} Ph.D. thesis, (Berkeley), 1988. 

 L. Nicolaescu, {\em The Maslov index, the spectral      flow, and decompositions of manifolds}, Duke Math. J. 80 (1995) no. 2,      485-533.  



 L. Nicolaescu, private communication.  

 L. Simon, {\em Asymptotics for a class of non-linear         evolution equations with applications to geometric problems,}         Annals of Math. (2) 118, (1983) N.3, 525--571. 

 C.H. Taubes, {\em The stable topology of self-dual           moduli spaces}, J.Diff.Geom. 29 (1989) 163-230.   

 C.H. Taubes, {\em       The Seiberg-Witten invariants and 4-manifolds with essential tori,}      Geom. Topol. 5 (2001), 441--519. 

 C.H. Taubes, private communication. 

  C.H. Taubes, {\em              Gauge theory on asymptotically periodic 4-manifolds,}  J.Diff.Geom.   25 (1986) 363-430.   

 R.G. Wang, {\em On Seiberg-Witten Floer invariants and         the Generalized  Thom Problem}, preprint.