Article:Math.DG/9907065/unidentified-references
From Knot Atlas
Jump to navigationJump to search
M.F. Atiyah, V.K. Patodi, I.M. Singer, {\em Spectral asymmetry and Riemannian geometry}, I,II,III; Math. Proc. Cambridge Phil. Soc. 77 (1975) 43-69; 78 (1975) 405-432; 79 (1976) 71-99. % UCP P.J. Braam, S.K. Donaldson, {\em Floer's work on instanton homology, knots and surgery}, Floer Memorial Volume, Progress in Mathematics, Vol. 133; Birkh\"auser 1995. S.E. Cappell, R. Lee, E.Y. Miller, {\em Self-adjoint elliptic operators and manifold decompositions. I: Low eigenmodes and stretching}, Commun. Pure Appl. Math. 49, No.8, 825-866 (1996). S.E. Cappell, R. Lee, E.Y. Miller, {\em Self-adjoint elliptic operators and manifold decompositions. II: Spectral flow and Maslov index}, Commun. Pure Appl. Math. 49, No.9, 869-909 (1996). S.E. Cappell, R. Lee, E.Y. Miller, {\em On the Maslov index}, Comm. Pure Appl. Math., Vol. XLVII (1994) 121-186. A.L. Carey, J. McCarthy, B.L. Wang, R.B. Zhang, {\em Seiberg-Witten Monopoles in Three Dimensions}, Lett. in Math. Phys., Vol. 39, 213-228, 1997; A.L. Carey, B.L. Wang, {\em Seiberg-Witten-Floer homology and gluing formulae}, to appear. M. Daniel, P.Kirk, with an appendix by K.P. Wojciechowski, {\em A general splitting formula for the spectral flow}, Michigan Math. J. 46 (1999), no. 3, 589-617. % A. Floer, {\em The unregularized gradient flow of % the symplectic action}. % Comm. Pure Appl. Math. 41 (1988), no. 6, 775-813. D. Freed, K. Uhlenbeck, {\em Instantons and 4-manifolds}, MSRI Lecture notes, Springer-Verlag, 1984. K.A. Fr\/{o}yshov, {\em The Seiberg-Witten equations and four-manifolds with boundary}, Math. Res. Lett. 3 (1996), N.3, 373-390; P.B. Kronheimer, {\em Embedded surfaces and gauge theory in three and four dimensions}, Surveys in differential geometry, Vol. III (1996), 243-298, Int. Press, 1998. P.B. Kronheimer, T.S.Mrowka, {\em The genus of embedded surfaces in the projective plane,} Math. Res. Lett. 1 (1994), 797-808. P.B. Kronheimer, T.S.Mrowka, {\em Monopoles and contact structures}. Inventiones Mathematicae, 130 (1997), no. 2, 209--255. Y. Lim, {\em Seiberg-Witten moduli spaces for 3-manifolds with cylindrical--end $T^2 \times \R^+$}. Comm. in Comtemp. Math., Vol. 2, No. 4 (2000) 461-509. Y. Lim, {\em Seiberg-Witten invariants for $3$-manifolds in the case $b\sb 1=0$ or $1$}. Pacific J. Math. 195 (2000), no. 1, 179--204. R.B. Lockhard, R.C. Mc Owen {\em Elliptic operators on non-compact manifolds}, Ann. Sci. Norm. Sup. Pisa, IV-12 (1985), 409-446. M. Marcolli, {\em Seiberg-Witten-Floer Homology and Heegaard Splittings} Intern. Jour. of Maths., Vol 7, No. 5 (1996) 671-696. M. Marcolli, {\em Seiberg-Witten gauge theory}, Texts and Readings in Mathematics, Vol. 17, Hindustan Book Agency, New Delhi, 1999. M. Marcolli, B.L. Wang {\em Equivariant Seiberg-Witten-Floer homology}, Commun. Anal. Geom. Vol.9 N.3 (2001) 451--639. G. Meng, C. H. Taubes {\em {\underline{SW}} = Milnor Torsion}, Math. Res. Lett. 3 (1996), no. 5, 661--674; J.W. Morgan, {\em The Seiberg-Witten equations and applications to the topology of smooth four-manifolds}, Princeton 1996. J.W. Morgan, T.S. Mrowka and D. Ruberman, {\em The $L^2$-moduli space and a vanishing theorem for Donaldson polynomial Invariants,} Monographs in Geometry and Topology, Vol 2, 1994. J.W. Morgan, Z. Szabo and C.H. Taubes, {\em A product formula for the Seiberg-Witten invariants and the generalized Thom Conjecture}, J. Differential Geom. 44 (1996), no. 4, 706-788. T.S. Mrowka, {\em A Mayer-Vietoris principle for Yang-Mills moduli spaces,} Ph.D. thesis, (Berkeley), 1988. L. Nicolaescu, {\em The Maslov index, the spectral flow, and decompositions of manifolds}, Duke Math. J. 80 (1995) no. 2, 485-533. L. Nicolaescu, private communication. L. Simon, {\em Asymptotics for a class of non-linear evolution equations with applications to geometric problems,} Annals of Math. (2) 118, (1983) N.3, 525--571. C.H. Taubes, {\em The stable topology of self-dual moduli spaces}, J.Diff.Geom. 29 (1989) 163-230. C.H. Taubes, {\em The Seiberg-Witten invariants and 4-manifolds with essential tori,} Geom. Topol. 5 (2001), 441--519. C.H. Taubes, private communication. C.H. Taubes, {\em Gauge theory on asymptotically periodic 4-manifolds,} J.Diff.Geom. 25 (1986) 363-430. R.G. Wang, {\em On Seiberg-Witten Floer invariants and the Generalized Thom Problem}, preprint.