Article:Math.SG/0107045/unidentified-references

From Knot Atlas
< Article:Math.SG/0107045
Revision as of 04:47, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
 % 

 V.I. Arnol'd, Lagrange and Legendre cobordisms~I, {\it Funct. Anal. Appl.} {\bf 14} (1980), 167--177. % 

 F. Ding and H. Geiges, Symplectic fillability of tight contact structures on torus bundles, {\it Algebr. Geom. Topol.} {\bf 1} (2001), 153--172. % 

 Y. Eliashberg, Classification of overtwisted contact structures on $3$--mani\-folds, {\it Invent. Math.} {\bf 98} (1989), 623--637. % 

 Y. Eliashberg, Topological characterization of Stein manifolds of dimension~$>2$, {\it Internat. J. of Math.} {\bf 1} (1990), 29--46. % 

 Y. Eliashberg, Contact $3$--manifolds twenty years since J.~Martinet's work, {\it Ann. Inst. Fourier (Grenoble)} {\bf 42} (1992), 165--192. % 

 J.B. Etnyre, Symplectic convexity in low-dimensional topology, {\it Topology Appl.} {\bf 88} (1998), 3--25. % 

 J.B. Etnyre and K. Honda, On symplectic cobordisms, {\it Math. Ann.} {\bf 323} (2002), 31--39. % 

 H. Geiges, A brief history of contact geometry and topology, {\it Expo. Math.} {\bf 19} (2001), 25--53. % 

 H. Geiges, Contact geometry, in: {\it Handbook of Differential Geometry}, vol.~2 (F.J.E. Dillen, L.C.A. Verstraelen, eds.), to appear.\\ (available from {\tt http://www.mi.uni-koeln.de/$\stackrel{\sim}{}$geiges/publications.html}) % 

 E. Giroux, Convexit\'e en topologie de contact, {\it Comment. Math. Helv.} {\bf 66} (1991), 637--677. % 

 E. Giroux, Une infinit\'e de structures de contact tendues sur une infinit\'e de vari\'et\'es, {\it Invent. Math.} {\bf 135} (1999), 789--802. % 

 E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, {\it Invent. Math.} {\bf 141} (2000), 615--689. % 

 E. Giroux, G\'eom\'etrie de contact: de la dimension trois vers les dimensions sup\'erieures, in: {\it Proceedings of the International Congress of Mathematicians} (Beijing, 2002) vol.~II, Higher Education Press, Beijing (2002), 405--414. % 

 E. Giroux, Structures de contact, livres ouverts et tresses ferm\'ees, in preparation. % 

 R.E. Gompf, Handlebody construction of Stein surfaces, {\it Annals of Math. (2)} {\bf 148} (1998), 619--693. % 

 K. Honda, On the classification of tight contact structures~I, {\it Geom. Topol.} {\bf 4} (2000), 309--368. % 

 Y. Kanda, The classification of tight contact structures on the $3$--torus, {\it Comm. Anal. Geom.} {\bf 5} (1997), 413--438. % 

 W.B.R. Lickorish, A representation of orientable combinatorial $3$--manifolds, {\it Annals of Math. (2)} {\bf 76} (1962), 531--540. % 

 R. Lutz, Sur l'existence de certaines formes diff\'erentielles remarquables sur la sph\`ere~$S^3$, {\it C. R. Acad. Sci. Paris S\'er. A-B} {\bf 270} (1970), A1597--A1599. % 

 R. Lutz, Structures de contact sur les fibr\'es principaux en cercles de dimension trois, {\it Ann. Inst. Fourier (Grenoble)} {\bf 27}, no.~3 (1977), 1--15. % 

 J. Martinet, Formes de contact sur les vari\'et\'es de dimension~$3$, in: {\it Proceedings of the Liverpool Singularities Symposium~II}, Lecture Notes in Math. {\bf 209}, Springer-Verlag, Berlin, 1971, pp.~142--163. % 

 H.E. Rose, {\it A Course in Number Theory}, Oxford University Press, 1988. % 

 A. Stipsicz, private communication. % 

 A.H. Wallace, Modifications and cobounding manifolds, {\it Canad. J. Math.} {\bf 12} (1960), 503--528.  % 

 A. Weinstein, Contact surgery and symplectic handlebodies, {\it Hokkaido Math. J.} {\bf 20} (1991), 241--251. %