Article:Math.SG/0007115/unidentified-references
From Knot Atlas
Jump to navigationJump to search
V.~I. Arnol'd, \emph{Some remarks on symplectic monodromy of {M}ilnor fibrations}, The {F}loer Memorial Volume (H.~Hofer, C.~Taubes, A.~Weinstein, and E.~Zehnder, eds.), Progress in Mathematics, vol. 133, Birkh{\"a}user, 1995, pp.~99--104. A.~I. Bondal and M.~M. Kapranov, \emph{Enhanced triangulated categories}, Math. USSR Sbornik \textbf{70} (1991), 93--107. S.~K. Donaldson, \emph{Polynomials, vanishing cycles, and {F}loer homology}, Preprint. A.~Floer, \emph{A relative {M}orse index for the symplectic action}, Comm. Pure Appl. Math. \textbf{41} (1988), 393--407. K.~Fukaya, \emph{Morse homotopy, {$A_\infty$}-categories, and {F}loer homologies}, Proceedings of {GARC} workshop on Geometry and Topology (H.~J. Kim, ed.), Seoul National University, 1993. \bysame, \emph{Floer homology for three-manifolds with boundary {I}}, Preprint, 1997. K.~Fukaya and Y.-G. Oh, \emph{Zero-loop open strings in the cotangent bundle and {M}orse homotopy}, Asian J. Math. \textbf{1} (1998), 96--180. M.~Kontsevich, \emph{Lectures at {ENS} {P}aris, {S}pring 1998}, set of notes taken by J.\ Bellaiche, J.-F. Dat, I. Marin, G. Racinet and H. Randriambololona. \bysame, \emph{Homological algebra of mirror symmetry}, Proceedings of the International Congress of Mathematicians (Z{\"u}rich, 1994), Birkh{\"a}user, 1995, pp.~120--139. D.~McDuff and D.~Salamon, \emph{{$J$}-holomorphic curves and quantum cohomology}, University Lecture Notes Series, vol.~6, Amer. Math. Soc., 1994. S.~Piunikhin, D.~Salamon, and M.~Schwarz, \emph{Symplectic {F}loer-{D}onaldson theory and quantum cohomology}, Contact and symplectic geometry (C.~B. Thomas, ed.), Cambridge Univ. Press, 1996, pp.~171--200. D.~Salamon and E.~Zehnder, \emph{Morse theory for periodic solutions of {H}amiltonian systems and the {M}aslov index}, Comm. Pure Appl. Math. \textbf{45} (1992), 1303--1360. M.~Schwarz, \emph{Cohomology operations from {$S^1$}-cobordisms in {F}loer homology}, Ph.D. thesis, {ETH} {Z}{\"u}rich, 1995. P.~Seidel, \emph{Floer homology and the symplectic isotopy problem}, Ph.D. thesis, Oxford University, 1997. \bysame, \emph{Lagrangian two-spheres can be symplectically knotted}, J. Differential Geom. \textbf{52} (1999), 145--171. \bysame, \emph{Graded {L}agrangian submanifolds}, Bull. Soc. Math. France \textbf{128} (2000), 103--146. V.~De Silva, \emph{Products in the symplectic {F}loer homology of {L}agrangian intersections}, Ph.D. thesis, Oxford University, 1998.