Article:Dg-ga/9710032/unidentified-references

From Knot Atlas
< Article:Dg-ga/9710032
Revision as of 05:20, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 R. Abraham, J. E. Marsden, and T. Ratiu, {\em Manifolds, Tensor Analysis, and Applications\/}, 2nd ed., Springer, New York, 1988.  

 R. A. Adams, {\em Sobolev Spaces\/}, Academic Press, Orlando, FL, 1975.   

  S. Agmon, {\em Unicit\'e et convexit\'e dans les probl\`emes differentiels\/}, Sem. Math. Sup., 1965, Univ. of Montreal Press, 1966.  

  S. Agmon and L. Nirenberg, {\em Lower bounds and uniqueness theorems for solutions of differential equations in Hilbert spaces\/}, Comm. Pure Appl. Math. {\bf 20} (1967) 207--229.  

  N. Aronszajn, {\em A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of the second order\/}, J. Math. Pures Appl. {\bf 36} (1957) 235--249.    

 M. F. Atiyah, V. K. Patodi, and I. M. Singer, {\em Spectral asymmetry in Riemannian geometry, I}, Math. Proc. Cambridge Phil. Soc. {\bf 77} (1975) 43--69.   

 T. Aubin, {\em Nonlinear Analysis on Complex Manifolds. Monge-Amp\`ere Equations\/}, Springer, New York, 1982.  

  P. J. Braam and S. K. Donaldson, {\em Floer's work on instanton homology, knots, and surgery\/}, in: The Floer Memorial Volume, eds. H. Hofer et al., Birkh\"auser, Boston, 1995, pp. 196--256.  

 S. B. Bradlow and G. D. Daskalopoulos, {\em Moduli of stable pairs for holomorphic bundles over Riemann surfaces\/}, Internat. J. Math. {\bf 2} (1991) 477--513.  


 T. Br\"ocker and T. tom Dieck, {\em Representations of Compact Lie Groups\/}, Springer, New York, 1985.  

 I. Chavel, {\em Eigenvalues in Riemannian Geometry\/}, Academic Press, Orlando, FL, 1984.   

 R. Constantinescu, MIT Thesis (Mathematics), 1996.  

 S. K. Donaldson, {\em An application of gauge theory to four-dimensional topology\/}, J. Differential Geom. {\bf 18} (1983) 279--315.  

  \bysame, {\em Connections, cohomology and the intersection forms of four-manifolds\/}, J. Differential Geom. {\bf 24} (1986) 275--341.  

 \bysame, {\em Irrationality and the $h$-cobordism conjecture\/}, J. Differential Geom. {\bf 26} (1987), 141--168.  

 \bysame, {\em The orientation of Yang-Mills moduli spaces and 4-manifold topology\/}, J. Differential Geom. {\bf 26} (1987) 397--428.  

 \bysame, {\em Polynomial invariants for smooth four-manifolds\/} Topology {\bf 29} (1990) 257--315.  

 \bysame, {\em The Seiberg-Witten equations and four-manifold topology\/}, Bull. Amer. Math. Soc. {\bf 33} (1996) 45--70.  

 S. K. Donaldson and P. B. Kronheimer,  {\em The Geometry of Four-Manifolds\/}, Oxford University Press, Oxford, 1990.  


  P. M. N. Feehan, {\em Critical-exponent Sobolev norms and the slice theorem for the quotient space of connections\/}, submitted to a print journal, October, 1996.  

 \bysame, {\em Generic metrics, irreducible rank-one $\PU(2)$ monopoles, and transversality\/},  submitted to a print journal, August 27, 1997.  


  \bysame, {\em $\PU(2)$ monopoles, II: Highest-level singularities and  relations between four-manifold invariants\/}, in preparation.  

  \bysame, {\em $\PU(2)$ monopoles, III: Existence of gluing and obstruction maps\/}, in preparation.  

  \bysame, {\em $\PU(2)$ monopoles, IV: Surjectivity of gluing maps\/}, in preparation.  

 R. Fintushel and R. Stern, {\em Donaldson invariants of 4-manifolds with simple type\/}, J. Differential Geom. {\bf 42} (1995) 577--633.  

 A. Floer, {\em An instanton-invariant for 3-manifolds\/}, Comm. Math. Phys. {\bf 118} (1988) 215--240.  

 D. Freed and K. K. Uhlenbeck, {\em Instantons and Four-Manifolds\/}, 2nd ed., Springer, New York, 1991.  

  R. Friedman and J. W. Morgan, {\em Smooth Four-Manifolds and  Complex Surfaces\/}, Springer, Berlin, 1994.  

 R. Friedman and Z. Qin, {\em Flips of moduli spaces and transition formulas for Donaldson polynomial invariants of rational surfaces\/}, Comm. Anal. Geom. (1995) 11--83.  

  D. Gilbarg and N. Trudinger, {\em Elliptic Partial Differential Equations of Second Order\/}, 2nd ed., Springer, New York, 1983.  

  P. B. Gilkey, {\em Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem\/}, Publish or Perish, Wilmington, DE, 1984.  

 L. G\"ottsche, {\em Modular forms and Donaldson invariants for 4-manifolds with $b_+=1$\/}, J. Amer. Math. Soc. {\bf 9} (1996), 827--843.    

 P. Hartman, {\em Ordinary Differential Equations\/}, 2nd ed., Birkh\"auser, Boston, 1982.   

 L. H\"ormander, {\em The Analysis of Linear Partial Differential Operators\/}, Vol. III, Springer, New York, 1983.  



 R. V. Kadison and J. R. Ringrose, {\em Fundamentals of the theory of operator algebras\/}, Volume I, Academic Press, New York, 1983.  

 T. Kato, {\em Perturbation Theory for Linear Operators}, 2nd ed., Springer, New York, 1984.  

 J. Kazdan, {\em Unique continuation in geometry\/}, Comm. Pure Appl. Math. {\bf XLI} (1988) 667--681.  

  S. Kobayashi {\em Differential Geometry of Complex Vector Bundles\/}, Princeton University Press, Princeton, NJ, 1987.  

  S. Kobayashi and K. Nomizu, {\em Foundations of Differential Geometry\/}, Vols. I \& II, Wiley, New York, 1963 and 1968.  

 D. Kotschick and J. W. Morgan, {\em $\SO(3)$ invariants for four-manifolds with $b^+=1$. II\/}, J. Differential Geom. {\bf 39} (1994) 433--456.  

  P. B. Kronheimer, {\em Seiberg-Witten Invariants for Four-Manifolds\/}, Lectures at Oxford University, Spring 1995.  

 P. B. Kronheimer and T. S. Mrowka,  {\em The genus of embedded surfaces in the projective plane\/}, Math. Res. Lett. {\bf 1} (1994) 797--808.  

 \bysame, {\em Embedded surfaces and the structure of Donaldson's polynomial invariants\/}, J. Differential Geom.  {\bf 43} (1995) 573--734.  

  \bysame, {\em Monopoles and contact structures\/}, Invent. Math., to appear.  





  O. A. Ladyzhenskaya and N. N. Ural'tseva, {\em Linear and Quasilinear Elliptic Equations\/}, Academic Press, New York, 1968.  

  S. Lang, {\em Differential and Riemannian Manifolds\/}, 3rd ed., Springer, New York, 1995.  

 H. B. Lawson, {\em The Theory of Gauge Fields in Four Dimensions\/}, Conf. Board Math. Sci. {\bf 58}, Amer. Math. Soc., Providence, RI, 1985.  

 H. B. Lawson and M-L. Michelsohn, {\em Spin Geometry\/}, Princeton Univ. Press, Princeton, NJ, 1988.  




 J. W. Morgan, {\em Gauge Theory and the Topology of Smooth Four-Manifolds\/}, Lecture Notes, Harvard University, 1988.   

  \bysame, {\em The Seiberg-Witten Equations and Applications to the Topology of Smooth Four-Manifolds\/}, Princeton University Press, Princeton, NJ, 1996.  

 J. W. Morgan, T. S. Mrowka, and D. Ruberman, {\em $L^2$ moduli spaces and a vanishing theorem for Donaldson polynomial invariants}, International Press, Cambridge, MA, 1994.  

 C. B. Morrey, {\em Multiple Integrals in the Calculus of Variations\/}, Springer, New York, 1966.  

 T. S. Mrowka, {\em Seiberg-Witten Invariants for Four-Manifolds\/}, Lectures at Harvard University, Spring 1995.  

 T. S. Mrowka, P. S. Ozsv\'ath, and B. Yu, {\em Seiberg-Witten monopoles on Seifert-fibered spaces\/}, Comm. Anal. Geom., to appear.  




 T. H. Parker, {\em Gauge theories on four dimensional Riemannian manifolds\/}, Comm. Math. Phys. {\bf 85} (1982) 563--602.  

 V. Y. Pidstrigach, {\em From Seiberg-Witten to Donaldson: $\SO(3)$ monopole equations\/}, Lecture at Newton Institute, Cambridge, December 1994.  

 \bysame, {\em Seiberg-Witten and Donaldson invariants\/}, Lecture at Oberwolfach, May 1996.  

 V. Y. Pidstrigach and A. N. Tyurin, {\em Invariants of the smooth structure of an algebraic surface arising from the Dirac operator\/}, Russian Acad. Sci. Izv. Math. {\bf 40} (1993) 267--351.  



 W. Rudin, {\em Functional Analysis\/}, McGraw-Hill, New York, 1973.  

  D. Salamon, {\em Spin Geometry and Seiberg-Witten Invariants\/}, Birkh\"auser, Boston, to appear.  

 S. Sedlacek, {\em A direct method for mimizing the Yang-Mills functional}, Comm. Math. Phys. {\bf 86} (1982) 515--527.  


 S. Smale, {\em An infinite-dimensional version of Sard's theorem\/}, Amer. J. Math. {\bf 87} (1973) 213--221.     

 C. H. Taubes, {\em Self-dual Yang-Mills connections on non-self-dual 4-manifolds\/}, J. Differential Geom. {\bf 17} (1982) 139--170.  

  \bysame, {\em Self-dual connections on 4-manifolds with indefinite intersection matrix},  J. Differential Geom. {\bf 19} (1984) 517--560.  

  \bysame, {\em Path-connected Yang-Mills moduli spaces\/}, J. Differential Geom. {\bf 19} (1984) 337--392.  

  \bysame, {\em A framework for Morse theory for the Yang-Mills functional\/}, Invent. Math. {\bf 94} (1988) 327--402.   

  \bysame, {\em The stable topology of self-dual moduli spaces}, J. Differential Geom. {\bf 29} (1989) 162--230.  

  \bysame, {\em Casson's invariant and gauge theory\/}, J. Differential Geom. {\bf 31} (1990) 547--599.  

  \bysame, {\em $L^2$ moduli spaces on 4-manifolds with cylindrical ends\/}, International Press, Cambridge, MA, 1993.  

 \bysame, {\em Unique continuation theorems in gauge theories\/}, Comm. Anal. Geom. {\bf 2} (1994) 35--52.  

 \bysame, {\em The Seiberg-Witten invariants and symplectic forms}, Math. Res. Lett. {\bf 1} (1994) 809--822.  

  \bysame, {\em Floer Theory for Twisted Circle Bundles\/}, International Press, Cambridge, MA, to appear.  



 \bysame, Untitled preprint.  

 K. K. Uhlenbeck, {\em Removable singularities in Yang-Mills fields\/}, Comm. Math. Phys. {\bf 83} (1982) 11--29.  

 \bysame, {\em Connections with $L^p$ bounds on curvature\/}, Comm. Math. Phys. {\bf 83} (1982) 31--42.  

 \bysame, {\em The Chern classes of Sobolev connections\/}, Comm. Math. Phys. {\bf 101} (1985) 449--457.  

 V. S. Varadarajan, {\em Lie Groups, Lie Algebras, and their Representations\/}, Springer, New York, 1984.  

 E. Witten, {\em Monopoles and four-manifolds\/}, Math. Res. Lett. {\bf 1} (1994) 769--796.  

  H-J. Yang, {\em Transition functions and a blow-up formula for Donaldson polynomials\/}, Columbia University Thesis, 1992.