Article:Alg-geom/9506019/unidentified-references

From Knot Atlas
< Article:Alg-geom/9506019
Revision as of 05:25, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 Atiyah, M. and Bott, R., {\em The moment map and equivariant cohomology},  Topology {\bf 23} (1985), 1--28.  

 Bott, R., {\em A residue formula for holomorphic vector fields},  J. of Diff. Geometry {\bf 1} (1967), 311--330.  

 Carrell, J.B.  and  Lieberman, D.I., {\em Holomorphic vector fields and {Kaehler} manifolds}, \ Invent. Math. {\bf 21} (1973), 303--309.  

 Carrell, J.B.  and  Lieberman, D.I., {\em Vector fields and {Chern} numbers}  Math. Ann. {\bf 225} (1977),263--273.    

 Donaldson, S.K., {\em Polynomial invariants for smooth four-manifolds}, Topology {\bf 29} (1990), 257--315.  

 Ellingsrud, G., {\em  A new proof of the irreducability of the punctual Hilbert scheme}, preprint.  

 Ellingsrud, G. and G\"ottsche, L., {\em  Variation of moduli spaces and Donaldson invariants under change of polarisation}, preprint 1994.  

 Ellingsrud, G., Le Potier, J. and Str{\o}mme, S.A., {\em Some Donaldson Invariants of $\C\P^2$}, preprint 1995.    

  Ellingsrud, G. and Str{\o}mme, S.A., {\em  On the homology of the {Hilbert} scheme of points in the plane},  Invent. Math. {\bf 87} (1987), 343--352. 

  Ellingsrud, G. and Str{\o}mme, S.A., {\em  Botts formula and enumerative geometry}, to appear in Journal of the AMS.  

 Fogarty, J.,{\em Algebraic families on an algebraic surface}, Amer. J. Math. {\bf 90} (1968), 511--521   

 Friedman, R., Morgan, J., {\em On the diffeomorphism types of certain algebraic surfaces, I}, J. Diff. Geom. {\bf 27} (1988), 297--369.  

 Friedman, R., Qin, Z., {\em Flips of moduli spaces and transition formulas for Donaldson     polynomial invariants of rational surfaces}, preprint.   

 Fintushel, R., Stern, R.J., {\em The blowup formula for Donaldson invariants}, preprint 1994.    

 Gieseker, D.,{\em On the moduli of vector bundles on an algebraic surface},  Ann. Math. {\bf 106} (1977),  45--60.  

 G\"ottsche, L., {\em Change of polarization and Hodge numbers of moduli spaces of torsion free sheaves on surfaces},  to appear in Math. Zeitschrift.     


 Kotschick, D., {\em $SO(3)$-invariants for $4$-manifolds with $b^+=1$}, Proc. London Math. Soc. {\bf 63} (1991), 426--448.  

 Kotschick, D., Lisca, P., {\em Instanton Invariants of $\C\P^2$ via Topology}, to appear in Math. Annalen.  

 Kotschick, D., Morgan, J., {\em $SO(3)$-invariants for $4$-manifolds with $b^+=1$ II},  J. Diff. Geom. {\bf 39} (1994), 433--456.  

 Leness, T. {\em Blow-up formulae for $SO(3)$-Donaldson invariants}, preprint.   

 [L-Q]{L-Q} Li, W.P., Qin, Z., {\em Lower-degree Donaldson polynomials of rational surfaces}, J. Alg. Geom. {\bf 2} (1993), 413--442.  

 Li, J., {\em Algebraic geometric interpretation of Donaldson's polynomial invariants}, J. Diff. Geom.  {\bf 37} (1993), 417--465.  

 [Ma1]{Ma1} Maruyama, M., {\em Moduli of stable sheaves I}, J. Math. Kyoto Univ., {\bf 17} (1977), 91--126.  

 [Ma2]{Ma2}  Maruyama, M.,  {\em Moduli of stable sheaves II}, J. Math. Kyoto Univ. {\bf 18} (1978), 557--614.  

 Matsuki, K., Wentworth, R., {\em Mumford-Thaddeus principle on the moduli space of vector bundles on an algebraic surface}, preprint 1994.  

 Morgan, J., {\em Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues}, Topology {\bf 32} (1993), 449--488.  

 O'Grady, K.G., {\em Algebro-geometric analogues of Donaldson's polynomials}, Invent. Math. {\bf 107} (1992), 351--395.  

 Ozsv\'ath, P., {\em Some Blowup formulas for $SU(2)$ Donaldson Polynomials},  J. Diff. Geom.  {\bf 40} (1994), 411--447.   

 Qin, Z., {\em Equivalence classes of polarizations and moduli spaces of sheaves}, J. Diff. Geom. {\bf 37} (1993), 397--413.  

  Qin, Z., {\em Moduli of stable sheaves on ruled surfaces and their Picard groups},  J. reine angew. Math. {\bf 433} (1992), 201--219.  

  Qin, Z., {\em Complex structures on certain differentiable $4$-manifolds}, Topology {\bf 32} (1993), 551--566.  

 Taubes, C.H., in preparation.