Article:Math.DG/9903021/unidentified-references

From Knot Atlas
< Article:Math.DG/9903021
Revision as of 06:05, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 T.~Aubin, {\em Nonlinear analysis on complex manifolds. {M}onge-{A}mp{\`e}re   equations}, Springer, New York, 1982.  

 S.~Bando, A.~Kasue, and H.~Nakajima, {\em On a construction of coordinates at   infinity on manifolds with fast curvature decay and maximal volume growth},   Invent. Math. {\bf 97} (1989), 313--349.  

 C.~B{\"a}r, {\em The {D}irac operator on space forms of positive curvature}, J.   Math. Soc. Japan {\bf 48} (1996), 69--83.  

 J-P. Bourguignon, {\em The ``magic'' of {W}eitzenb\"ock formulas}, Variational   methods, Proceedings of the Conference on Variational Problems, Paris, 1988   (H.~Berestycki, J-M. Coron, and I.~Ekeland, eds.), Progress in nonlinear   differential equations and their applications, vol.~4, Birkh\"auser, Boston,   MA, 1990, pp.~251--271.  

 T.~Branson, {\em Kato constants in {R}iemannian geometry}, Math. Res. Lett.   {\bf 7} (2000), 245--261, preprint version at   http://www.math.uiowa.edu/~branson.  


 \bysame, {\em On the {K}ato   inequality in {R}iemannian geometry}, preprint.  

 S.~K. Donaldson, {\em An application of gauge theory to four-dimensional   topology}, J. Differential Geom. {\bf 18} (1983), 279--315.  

 S.~K. Donaldson and P.~B. Kronheimer, {\em The geometry of four-manifolds},   Oxford Univ. Press, Oxford, 1990.  








 \bysame, {\em {PU(2)} monopoles. {IV}: {S}urjectivity of gluing maps}, in   preparation.  

 D.~Freed and K.~K. Uhlenbeck, {\em Instantons and four-manifolds}, 2nd ed.,   Springer, New York, 1991.  

 Th. Friedrich, {\em Der erste {E}igenwert des {D}irac-{O}perators einer   kompakten, {R}iemannschen {M}annigfaltigkeit nichtnegativer   {S}kalarkr\"ummung}, Math. Nachr. {\bf 97} (1980), 117--146.  

 D.~Gilbarg and N.~Trudinger, {\em Elliptic partial differential equations of   second order}, second ed., Springer, New York, 1983.  

 D.~Groisser and T.~H. Parker, {\em Sharp decay estimates for {Y}ang-{M}ills   fields}, Comm. Anal. Geom. {\bf 5} (1997), 439--474.  

 N.~Hitchin, {\em Harmonic spinors}, Adv. in Math. {\bf 14} (1974), 1--55.  

 M.~Itoh and H.~Nakajima, {\em Yang-{M}ills connections and   {E}instein-{H}ermitian metrics}, K\"ahler metric and moduli spaces   (T.~Ochiai, ed.), Advanced Studies in Pure Mathematics, vol. 18-II, Academic   Press, Boston, MA, 1990, pp.~395--457.  

 H.~B. Lawson and M-L. Michelsohn, {\em Spin geometry}, Princeton Univ. Press,   Princeton, NJ, 1988.  

 H.~Nakajima, {\em Yau's trick}, S\^ ugaku {\bf 41} (1989), 253--258, (in   Japanese; English summary in MR 91j:58173).  

 \bysame, {\em Moduli spaces of anti-self-dual connections on {A}{L}{E}   gravitational instantons}, Invent. Math. {\bf 102} (1990), 267--303.  

 J.~R{\aa }de, {\em Decay estimates for {Y}ang-{M}ills fields: Two simplified   proofs}, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA   1992), Publish or Perish, Houston, TX, 1993, pp.~91--105.  

 D.~Salamon, {\em Spin geometry and {S}eiberg-{W}itten invariants},   Birkh{\"a}user, Boston, to appear.  

 R.~Schoen, L.~Simon, and S.~T. Yau, {\em Curvature estimates for minimal   hypersurfaces}, Acta Math. {\bf 134} (1975), 275--288.  

 E.~Stein, {\em Singular integral operators and differentiability properties of   functions}, Princeton Univ. Press, Princeton, NJ, 1970.  

 C.~H. Taubes, {\em The stable topology of self-dual moduli spaces}, J.   Differential Geom. {\bf 29} (1989), 162--230.  

 K.~K. Uhlenbeck, {\em Connections with {$L^p$} bounds on curvature}, Comm.   Math. Phys. {\bf 83} (1982), 31--42.  

 \bysame, {\em Removable singularities in {Y}ang-{M}ills fields}, Comm. Math.   Phys. {\bf 83} (1982), 11--29.  

 D.~Yang, {\em Private communication}, March 1999.  

 S-T. Yau, {\em On the {R}icci curvature of a compact {K}\"ahler manifold and   the complex {M}onge-{A}mp\`ere equation. {I}}, Comm. Pure Appl. Math. {\bf   31} (1978), 339--411.