Article:Math.DG/9903021/unidentified-references
From Knot Atlas
Jump to navigationJump to search
T.~Aubin, {\em Nonlinear analysis on complex manifolds. {M}onge-{A}mp{\`e}re equations}, Springer, New York, 1982. S.~Bando, A.~Kasue, and H.~Nakajima, {\em On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth}, Invent. Math. {\bf 97} (1989), 313--349. C.~B{\"a}r, {\em The {D}irac operator on space forms of positive curvature}, J. Math. Soc. Japan {\bf 48} (1996), 69--83. J-P. Bourguignon, {\em The ``magic'' of {W}eitzenb\"ock formulas}, Variational methods, Proceedings of the Conference on Variational Problems, Paris, 1988 (H.~Berestycki, J-M. Coron, and I.~Ekeland, eds.), Progress in nonlinear differential equations and their applications, vol.~4, Birkh\"auser, Boston, MA, 1990, pp.~251--271. T.~Branson, {\em Kato constants in {R}iemannian geometry}, Math. Res. Lett. {\bf 7} (2000), 245--261, preprint version at http://www.math.uiowa.edu/~branson. \bysame, {\em On the {K}ato inequality in {R}iemannian geometry}, preprint. S.~K. Donaldson, {\em An application of gauge theory to four-dimensional topology}, J. Differential Geom. {\bf 18} (1983), 279--315. S.~K. Donaldson and P.~B. Kronheimer, {\em The geometry of four-manifolds}, Oxford Univ. Press, Oxford, 1990. \bysame, {\em {PU(2)} monopoles. {IV}: {S}urjectivity of gluing maps}, in preparation. D.~Freed and K.~K. Uhlenbeck, {\em Instantons and four-manifolds}, 2nd ed., Springer, New York, 1991. Th. Friedrich, {\em Der erste {E}igenwert des {D}irac-{O}perators einer kompakten, {R}iemannschen {M}annigfaltigkeit nichtnegativer {S}kalarkr\"ummung}, Math. Nachr. {\bf 97} (1980), 117--146. D.~Gilbarg and N.~Trudinger, {\em Elliptic partial differential equations of second order}, second ed., Springer, New York, 1983. D.~Groisser and T.~H. Parker, {\em Sharp decay estimates for {Y}ang-{M}ills fields}, Comm. Anal. Geom. {\bf 5} (1997), 439--474. N.~Hitchin, {\em Harmonic spinors}, Adv. in Math. {\bf 14} (1974), 1--55. M.~Itoh and H.~Nakajima, {\em Yang-{M}ills connections and {E}instein-{H}ermitian metrics}, K\"ahler metric and moduli spaces (T.~Ochiai, ed.), Advanced Studies in Pure Mathematics, vol. 18-II, Academic Press, Boston, MA, 1990, pp.~395--457. H.~B. Lawson and M-L. Michelsohn, {\em Spin geometry}, Princeton Univ. Press, Princeton, NJ, 1988. H.~Nakajima, {\em Yau's trick}, S\^ ugaku {\bf 41} (1989), 253--258, (in Japanese; English summary in MR 91j:58173). \bysame, {\em Moduli spaces of anti-self-dual connections on {A}{L}{E} gravitational instantons}, Invent. Math. {\bf 102} (1990), 267--303. J.~R{\aa }de, {\em Decay estimates for {Y}ang-{M}ills fields: Two simplified proofs}, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA 1992), Publish or Perish, Houston, TX, 1993, pp.~91--105. D.~Salamon, {\em Spin geometry and {S}eiberg-{W}itten invariants}, Birkh{\"a}user, Boston, to appear. R.~Schoen, L.~Simon, and S.~T. Yau, {\em Curvature estimates for minimal hypersurfaces}, Acta Math. {\bf 134} (1975), 275--288. E.~Stein, {\em Singular integral operators and differentiability properties of functions}, Princeton Univ. Press, Princeton, NJ, 1970. C.~H. Taubes, {\em The stable topology of self-dual moduli spaces}, J. Differential Geom. {\bf 29} (1989), 162--230. K.~K. Uhlenbeck, {\em Connections with {$L^p$} bounds on curvature}, Comm. Math. Phys. {\bf 83} (1982), 31--42. \bysame, {\em Removable singularities in {Y}ang-{M}ills fields}, Comm. Math. Phys. {\bf 83} (1982), 11--29. D.~Yang, {\em Private communication}, March 1999. S-T. Yau, {\em On the {R}icci curvature of a compact {K}\"ahler manifold and the complex {M}onge-{A}mp\`ere equation. {I}}, Comm. Pure Appl. Math. {\bf 31} (1978), 339--411.