Article:Math.DG/0201157/unidentified-references
From Knot Atlas
Jump to navigationJump to search
M Black, \textit{Harmonic maps into homogeneous spaces}, Pitman Research Notes in Math.\ 255, Longman, Harlow 1991. J Bolton, F Pedit \& L Woodward, \textit{Minimal surfaces and the affine Toda field model.} J.\ reine angew.\ Math.\ 459 (1995), 119-150. J Bolton \& L Woodward, \textit{Congruence theorems for harmonic maps from a Riemann surface into $\CP^n$ and $S^n$}, J.\ London Math.\ Soc.\ 45 (1992), 363-376. F Burstall, \textit{Harmonic tori in spheres and complex projective spaces}, J.\ reine angew.\ Math.\ 469 (1995), 149-177. F E Burstall \& F Pedit, \textit{Harmonic maps via Adler-Kostant-Symes theory,} in \textit{Harmonic maps and integrable systems}, ed: A P Fordy \& J C Wood, Aspects of Mathematics E23, Vieweg 1994. I Castro \& F Urbano, \textit{New examples of minimal Lagrangian tori in the complex projective plane}, Manuscripta Math.\ 85 (1994), 265-281. R Donagi, \textit{The fibers of the Prym map}, in \textit{Curves, Jacobians and abelian varieties,} Contemp.\ Math.\ 136, 55-125, AMS 1992. J Eells \& L Lemaire, \textit{Selected topics in harmonic maps}, CBMS Regional Conference Series in Mathematics 50, AMS 1980. D Ferus, F Pedit, U Pinkall \& I Sterling, \textit{Minimal tori in $S^4$,} J.\ reine angew.\ Math.\ 429 (1992), 1-47. M Gross, \textit{Special Lagrangian fibrations II. Geometry. A survey of techniques in the study of special Lagrangian fibrations,} Surv.\ Diff.\ Geom.\ 5 (1999), 341-403. R Harvey \& H B Lawson, \textit{Calibrated geometries}, Acta Math.\ 148 (1982), 47-157. I McIntosh, \textit{The construction of all non-isotropic harmonic tori in complex projective space,} Internat.\ J.\ Math.\ 6 (1995), 831-879. I McIntosh, \textit{Two remarks on the construction of harmonic tori in $\CP^n$,} Internat.\ J.\ Math.\ 7 (1996), 515-520. I McIntosh, \textit{On the existence of superconformal 2-tori and doubly periodic affine Toda fields,} J.\ Geometry Phys.\ 24 (1998), 223-243. I McIntosh, \textit{Harmonic tori and generalised Jacobi varieties}, Comm.\ Anal.\ Geom.\ 9 (2001), 423-449. B O'Neill, \textit{The fundamental equations of a submersion}, Michigan Math.\ J.\ 13 (1966), 459-469. R Sharipov, \textit{Minimal tori in the five dimensional sphere in $\C^3$,} Theoret.\ and Math.\ Phys.\ 87 (1991), 363-369. A Strominger, S-T Yau \& E Zaslow, \textit{Mirror symmetry is T-duality,} Nuclear Phys.\ B 479 (1996), 243-259.