Article:Math.DG/0110052/unidentified-references

From Knot Atlas
< Article:Math.DG/0110052
Revision as of 06:27, 17 September 2006 by ScottBiblioRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search
  

 R.~Abraham, J.~E. Marsden, and T.~Ratiu, \emph{Manifolds, {T}ensor {A}nalysis,   and {A}pplications}, second ed., Springer-Verlag, New York, 1988.  

 Adrian Butscher, \emph{Regularizing a singular special {L}agrangian variety},   Submitted February 2001.  

 Reese Harvey and H.~Blaine Lawson, Jr., \emph{Calibrated geometries}, Acta   Math. \textbf{148} (1982), 47--157.  


 Nigel~J. Hitchin, \emph{The moduli space of special {L}agrangian submanifolds},   Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) \textbf{25} (1997), no.~3-4,   503--515, Dedicated to Ennio De Giorgi.  








 Dusa McDuff and Dietmar Salamon, \emph{Introduction to {S}ymplectic   {T}opology}, {S}econd ed., The Clarendon Press Oxford University Press, New   York, 1998.  

 Robert~C. McLean, \emph{Deformations of calibrated submanifolds}, Comm. Anal.   Geom. \textbf{6} (1998), no.~4, 705--747.  

 David~R. Morrison, \emph{Mathematical aspects of mirror symmetry}, Complex   Algebraic Geometry (Park City, UT, 1993), Amer. Math. Soc., Providence, RI,   1997, pp.~265--327.  

 Sema Salur, \emph{Deformations of special {L}agrangian submanifolds}, Commun.   Contemp. Math. \textbf{2} (2000), no.~3, 365--372.  

 R.~Schoen and J.~Wolfson, \emph{Minimizing volume among {L}agrangian   submanifolds}, Differential {E}quations: {L}a {P}ietra 1996 (Shatah Giaquinta   and Varadhan, eds.), Proc. of Symp. in Pure Math., vol.~65, 1999,   pp.~181--199.  

 Richard Schoen, \emph{Lecture {N}otes in {G}eometric {P}{D}{E}s on   {M}anifolds}, Course given in the Spring of 1998 at Stanford University.  

 \bysame, \emph{Private communication}, Will be part of the MSRI Lecture Notes   for the Clay Mathematics Institute Summer School on the Global Theory of   Minimal Surfaces of the Summer of 2001.  

 G{\"u}nter Schwarz, \emph{Hodge {D}ecomposition---{A} {M}ethod for {S}olving   {B}oundary {V}alue {P}roblems}, Springer-Verlag, Berlin, 1995.