Article:Math.DG/9909116/unidentified-references
From Knot Atlas
Jump to navigationJump to search
S.~Bando, A.~Kasue and H.~Nakajima, \emph{On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth}, Invent. Math. \textbf{97} (1989), 313--349. R.~J.~Baston and M.~G.~Eastwood, \emph{The Penrose Transform}, Oxford University Press, Oxford, 1989. P.~B{\'e}rard, \emph{From vanishing theorems to estimating theorems: the {B}ochner technique revisited}, Bull. Amer. Math. Soc. \textbf{19} (1988), 371--406. P.~B{\'e}rard, \emph{Remarque sur l'{\'e}quation de Simons}, in: \emph{Differential geometry}, H. B. Lawson and K. Tenenblat, eds., Pitman, 1991, pp. 47--57. M. Bordoni, \emph{Spectral estimates for {S}chr{\"o}dinger and {D}irac-type operators}, Math. Annalen \textbf{298} (1994), 693--718. M. Bordoni, \emph{Comparaison de spectres d'op{\'e}rateurs de type {S}chr{\"o}dinger et {D}irac}, S{\'e}minaire de Th{\'e}orie spectrale et g{\'e}om{\'e}trie \textbf{14} (1995--1995), 69--81. J.~P. Bourguignon, \emph{The magic of Weitzenb{\"o}ck formulas}, Variational methods (Paris, 1988) (H.~Be\-res\-tycki, J.M. Coron and I.~Ekeland, eds.), PNLDE, vol.~4, Birkh{\"a}user, 1990, pp.~251--271. T. Branson, \emph{Stein-Weiss operators and ellipticity}, J. Funct. Anal. \textbf{151} (1997), 334--383. T. Branson, \emph{Kato constants in Riemannian geometry}, Preprint (1999). T.~Branson and O. Hijazi, \emph{Vanishing theorems and eigenvalue estimates in Riemannian geometry}, Int. J. Math., Vol. \textbf{8}, No \textbf{7} (1997), 921--934. H.~Fegan, \emph{Conformally invariant first order differential operators}, Quart. J. Math \textbf{27} (1976), 371--378. W.~Fulton and J.~Harris, \emph{Representation Theory --- {A} First Course}, Grad. Text. Math. vol. {\bf 129}, Springer, 1991. P.~Gauduchon, \emph{Structures de Weyl et th{\'e}or{\`e}mes d'annulation sur une vari{\'e}t{\'e} conforme autoduale}, Ann. Sc. Norm. Sup. Pisa \textbf{18} (1991), 563--629. M.~Gursky and C.~LeBrun, \emph{On Einstein manifolds of positive sectional curvature}, preprint. H.~Hess, R.~Schrader and D.~Uhlenbrock, \emph{Kato's inequality and the spectral distribution of Laplacians on compact Riemannian manifolds}, J. Diff. Geom. \textbf{15} (1980), 27--38. O.~Hijazi, \emph{A conformal lower bound for the smallest eigenvalue of the {D}irac operator and {K}illing spinors}, Commun. Math. Phys. \textbf{104} (1986), 151--162. N.~Hitchin, \emph{Linear fields on self-dual spaces}, Proc. Roy. Soc. London \textbf{A 370} (1980), 173--191. J. Kalina, B. \O rsted, A. Pierzchalski, P. Walczak and G. Zhang, \emph{Elliptic gradients and highest weights}, Bull. Acad. Polon. Sci. Ser. Math. \textbf{44} (1996), 511--519. D.~Meyer, \emph{Une in{\'e}galit{\'e} de g{\'e}om{\'e}trie hilbertienne et ses applications {\`a} la g{\'e}om{\'e}trie riemannienne}, C. R. Acad. Sci. Paris \textbf{295} (1982), 467--469. H.~Nakajima, {\it Yau's trick}, S{\^u}gaku \textbf{41} (1989), 253--258 (in Japanese, see MR 91j:58173 or Zbl. 736.53041). A. M. Perelomov and V. S. Popov, \emph{Casimir operators for semi-simple Lie groups}, Izv. Akad. Nauk SSSR, Ser. Mat. Tom \textbf{32} (1968), No 6; English translation in: Math. USSR Izvestija, Vol. \textbf{2} (1968), No 6, 1313--1335. J.~Rade, \emph{Decay estimates for Yang-Mills fields: two new proofs}, Global analysis in modern mathematics (Orono, 1991, Waltham, 1992), Publish or Perish, Houston, 1993, pp. 91--105. S.~Salamon, \emph{Riemannian Geometry and Holonomy Groups}, Pitman Res. Not. Math., vol. 201, Longman Sc. and Tech., London, 1989. H.~Samelson, {\it Notes on Lie Algebras}, 2nd ed., Universitext, Springer-Verlag, New York, 1990. R.~Schoen, L.~Simon and S.~T.~Yau, \emph{Curvature estimates for minimal hypersurfaces}, Acta Math. \textbf{134} (1975), 275--288. E.~Stein and G.~Weiss, \emph{Generalization of the {C}auchy-{R}iemann equations and representations of the rotation group}, Amer. J. Math. \textbf{90} (1968), 163--196. K.~Uhlenbeck, \emph{Removable singularities for {Y}ang-{M}ills fields}, Commun. Math. Phys. \textbf{83} (1982), 11--30. S.~T.~Yau, {\it On the Ricci curvature of a compact K{\"a}hler manifold and the complex Monge-Amp{\`e}re equation, I}, Commun. Pure Appl. Math. \textbf{31} (1978), 339--411.