L10n102
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n102's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X11,18,12,19 X15,20,16,17 X19,16,20,9 X17,12,18,13 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -4}, {-8, 5, -7, 6}, {10, -2, -5, 8, 4, -3, -6, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(x-1) \left(u v w x+u v w-u w+u x^2-v w+v x^2-x^2-x\right)}{\sqrt{u} \sqrt{v} \sqrt{w} x^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{1}{q^{9/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{23/2}}+\frac{1}{q^{21/2}}-\frac{4}{q^{19/2}}+\frac{2}{q^{17/2}}-\frac{4}{q^{15/2}}+\frac{1}{q^{13/2}}-\frac{3}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{13} z^{-3} -4 a^{11} z^{-1} -3 a^{11} z^{-3} +5 z a^9+7 a^9 z^{-1} +3 a^9 z^{-3} -z^3 a^7-z a^7-2 a^7 z^{-1} -a^7 z^{-3} -z^5 a^5-5 z^3 a^5-4 z a^5-a^5 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^7 a^{13}+6 z^5 a^{13}-13 z^3 a^{13}+13 z a^{13}-6 a^{13} z^{-1} +a^{13} z^{-3} -z^8 a^{12}+3 z^6 a^{12}+4 z^4 a^{12}-16 z^2 a^{12}-3 a^{12} z^{-2} +13 a^{12}-5 z^7 a^{11}+26 z^5 a^{11}-41 z^3 a^{11}+31 z a^{11}-14 a^{11} z^{-1} +3 a^{11} z^{-3} -z^8 a^{10}+19 z^4 a^{10}-36 z^2 a^{10}-6 a^{10} z^{-2} +24 a^{10}-4 z^7 a^9+22 z^5 a^9-36 z^3 a^9+26 z a^9-12 a^9 z^{-1} +3 a^9 z^{-3} -3 z^6 a^8+16 z^4 a^8-21 z^2 a^8-3 a^8 z^{-2} +11 a^8+z^5 a^7-3 z^3 a^7+4 z a^7-3 a^7 z^{-1} +a^7 z^{-3} +z^4 a^6-z^2 a^6-a^6-z^5 a^5+5 z^3 a^5-4 z a^5+a^5 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



