L11n210

From Knot Atlas
Revision as of 12:14, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n209.gif

L11n209

L11n211.gif

L11n211

L11n210.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n210 at Knotilus!


Link Presentations

[edit Notes on L11n210's Link Presentations]

Planar diagram presentation X10,1,11,2 X2,11,3,12 X12,3,13,4 X5,14,6,15 X22,18,9,17 X4,19,5,20 X21,6,22,7 X16,7,17,8 X8,9,1,10 X18,14,19,13 X15,21,16,20
Gauss code {1, -2, 3, -6, -4, 7, 8, -9}, {9, -1, 2, -3, 10, 4, -11, -8, 5, -10, 6, 11, -7, -5}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n210 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-8-7-6-5-4-3-2-101χ
0         1-1
-2        1 1
-4       22 0
-6      2   2
-8     22   0
-10    22    0
-12   12     1
-14  12      -1
-16  1       1
-1811        0
-201         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n209.gif

L11n209

L11n211.gif

L11n211