L11n368

From Knot Atlas
Revision as of 12:14, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n367.gif

L11n367

L11n369.gif

L11n369

L11n368.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n368 at Knotilus!


Link Presentations

[edit Notes on L11n368's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X7,14,8,15 X15,20,16,21 X11,19,12,18 X17,13,18,12 X19,22,20,17 X21,16,22,5 X13,8,14,9 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-6, 5, -7, 4, -8, 7}, {10, -1, -3, 9, 11, -2, -5, 6, -9, 3, -4, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n368 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1            0
-3         31 2
-5       112  2
-7      121   0
-9     221    1
-11    242     0
-13   112      2
-15  121       0
-17 11         0
-19 1          1
-211           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n367.gif

L11n367

L11n369.gif

L11n369