L11n399

From Knot Atlas
Revision as of 12:15, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n398.gif

L11n398

L11n400.gif

L11n400

L11n399.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n399 at Knotilus!


Link Presentations

[edit Notes on L11n399's Link Presentations]

Planar diagram presentation X6172 X10,3,11,4 X22,16,19,15 X7,20,8,21 X19,8,20,9 X13,18,14,5 X11,14,12,15 X17,12,18,13 X16,22,17,21 X2536 X4,9,1,10
Gauss code {1, -10, 2, -11}, {-5, 4, 9, -3}, {10, -1, -4, 5, 11, -2, -7, 8, -6, 7, 3, -9, -8, 6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n399 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          1 -1
-3         31 2
-5        23  1
-7      131   1
-9     112    2
-11    153     1
-13   1 2      3
-15   12       -1
-17 11         0
-19            0
-211           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n398.gif

L11n398

L11n400.gif

L11n400