L11n293

From Knot Atlas
Revision as of 12:15, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n292.gif

L11n292

L11n294.gif

L11n294

L11n293.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n293 at Knotilus!


Link Presentations

[edit Notes on L11n293's Link Presentations]

Planar diagram presentation X6172 X11,18,12,19 X8493 X2,16,3,15 X16,7,17,8 X9,11,10,22 X4,17,1,18 X19,5,20,10 X5,12,6,13 X21,15,22,14 X13,21,14,20
Gauss code {1, -4, 3, -7}, {-9, -1, 5, -3, -6, 8}, {-2, 9, -11, 10, 4, -5, 7, 2, -8, 11, -10, 6}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n293 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          2 -2
9         21 1
7       132  0
5      132   0
3     233    2
1    263     1
-1   125      4
-3  121       0
-5 111        1
-7 1          1
-91           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n292.gif

L11n292

L11n294.gif

L11n294