L11a371
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a371's Link Presentations]
| Planar diagram presentation | X12,1,13,2 X14,4,15,3 X22,14,11,13 X16,6,17,5 X2,11,3,12 X4,16,5,15 X6,22,7,21 X20,8,21,7 X18,10,19,9 X10,18,1,17 X8,20,9,19 |
| Gauss code | {1, -5, 2, -6, 4, -7, 8, -11, 9, -10}, {5, -1, 3, -2, 6, -4, 10, -9, 11, -8, 7, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^4 v^2-u^4 v+u^3 v^3-3 u^3 v^2+2 u^3 v-u^3+u^2 v^4-3 u^2 v^3+3 u^2 v^2-3 u^2 v+u^2-u v^4+2 u v^3-3 u v^2+u v-v^3+v^2}{u^2 v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 9 q^{9/2}-8 q^{7/2}+6 q^{5/2}-4 q^{3/2}+q^{21/2}-2 q^{19/2}+3 q^{17/2}-6 q^{15/2}+7 q^{13/2}-9 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} +z^3 a^{-1} -2 z^3 a^{-3} -z^3 a^{-5} -3 z^3 a^{-7} +z^3 a^{-9} +2 z a^{-1} +2 z a^{-5} -3 z a^{-7} +2 z a^{-9} + a^{-5} z^{-1} - a^{-7} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^6 a^{-12} -4 z^4 a^{-12} +3 z^2 a^{-12} +2 z^7 a^{-11} -8 z^5 a^{-11} +8 z^3 a^{-11} -3 z a^{-11} +2 z^8 a^{-10} -6 z^6 a^{-10} +2 z^4 a^{-10} +z^2 a^{-10} +2 z^9 a^{-9} -7 z^7 a^{-9} +7 z^5 a^{-9} -z^3 a^{-9} -3 z a^{-9} +z^{10} a^{-8} -2 z^8 a^{-8} -z^6 a^{-8} +5 z^4 a^{-8} -2 z^2 a^{-8} +4 z^9 a^{-7} -18 z^7 a^{-7} +33 z^5 a^{-7} -23 z^3 a^{-7} +8 z a^{-7} - a^{-7} z^{-1} +z^{10} a^{-6} -2 z^8 a^{-6} +8 z^4 a^{-6} -5 z^2 a^{-6} + a^{-6} +2 z^9 a^{-5} -7 z^7 a^{-5} +14 z^5 a^{-5} -12 z^3 a^{-5} +6 z a^{-5} - a^{-5} z^{-1} +2 z^8 a^{-4} -4 z^6 a^{-4} +4 z^4 a^{-4} -3 z^2 a^{-4} +2 z^7 a^{-3} -3 z^5 a^{-3} -z^3 a^{-3} +2 z^6 a^{-2} -5 z^4 a^{-2} +2 z^2 a^{-2} +z^5 a^{-1} -3 z^3 a^{-1} +2 z a^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



