L10a101

From Knot Atlas
Revision as of 12:17, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10a100.gif

L10a100

L10a102.gif

L10a102

L10a101.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10a101 at Knotilus!

Contains two L4a1 configurations.

As a Celtic (or pseudo-Celtic) linear decorative knot
(multicolored)
Mongolian ornament
Rotated knotwork cross with four L10a101 sub-configurations

Link Presentations

[edit Notes on L10a101's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,3,13,4 X14,19,15,20 X18,7,19,8 X6,15,7,16 X16,5,17,6 X4,17,5,18 X20,13,9,14 X2,9,3,10 X8,11,1,12
Gauss code {1, -9, 2, -7, 6, -5, 4, -10}, {9, -1, 10, -2, 8, -3, 5, -6, 7, -4, 3, -8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10a101 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-10-9-8-7-6-5-4-3-2-10χ
-2          11
-4         31-2
-6        3  3
-8       43  -1
-10      53   2
-12     44    0
-14    45     -1
-16   24      2
-18  24       -2
-20 13        2
-22 1         -1
-241          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10a100.gif

L10a100

L10a102.gif

L10a102