L11a22
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a22's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X18,10,19,9 X22,14,5,13 X20,16,21,15 X16,20,17,19 X14,22,15,21 X8,18,9,17 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -9, 4, -2, 11, -3, 5, -8, 6, -7, 9, -4, 7, -6, 8, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)-1) (t(2)-1) \left(3 t(2)^2-4 t(2)+3\right)}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 12 q^{9/2}-11 q^{7/2}+7 q^{5/2}-5 q^{3/2}+q^{21/2}-3 q^{19/2}+6 q^{17/2}-8 q^{15/2}+11 q^{13/2}-13 q^{11/2}+2 \sqrt{q}-\frac{1}{\sqrt{q}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^5 a^{-3} -z^5 a^{-5} -z^5 a^{-7} +z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-7} +z^3 a^{-9} +2 z a^{-1} -2 z a^{-3} +2 z a^{-5} -3 z a^{-7} +z a^{-9} + a^{-1} z^{-1} - a^{-3} z^{-1} + a^{-5} z^{-1} -2 a^{-7} z^{-1} + a^{-9} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^{10} a^{-6} -z^{10} a^{-8} -2 z^9 a^{-5} -6 z^9 a^{-7} -4 z^9 a^{-9} -2 z^8 a^{-4} -2 z^8 a^{-6} -5 z^8 a^{-8} -5 z^8 a^{-10} -2 z^7 a^{-3} +3 z^7 a^{-5} +21 z^7 a^{-7} +13 z^7 a^{-9} -3 z^7 a^{-11} -2 z^6 a^{-2} +11 z^6 a^{-6} +28 z^6 a^{-8} +18 z^6 a^{-10} -z^6 a^{-12} -z^5 a^{-1} -8 z^5 a^{-5} -32 z^5 a^{-7} -14 z^5 a^{-9} +9 z^5 a^{-11} +4 z^4 a^{-2} +3 z^4 a^{-4} -23 z^4 a^{-6} -44 z^4 a^{-8} -19 z^4 a^{-10} +3 z^4 a^{-12} +3 z^3 a^{-1} +7 z^3 a^{-3} +12 z^3 a^{-5} +20 z^3 a^{-7} +8 z^3 a^{-9} -4 z^3 a^{-11} -z^2 a^{-2} +17 z^2 a^{-6} +27 z^2 a^{-8} +10 z^2 a^{-10} -z^2 a^{-12} -3 z a^{-1} -5 z a^{-3} -7 z a^{-5} -8 z a^{-7} -3 z a^{-9} - a^{-2} -4 a^{-6} -7 a^{-8} -3 a^{-10} + a^{-1} z^{-1} + a^{-3} z^{-1} + a^{-5} z^{-1} +2 a^{-7} z^{-1} + a^{-9} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



