L11a474
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a474's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X20,14,21,13 X8,19,9,20 X18,9,19,10 X22,16,17,15 X16,18,5,17 X14,22,15,21 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {8, -6, 5, -4, 9, -7}, {10, -1, 3, -5, 6, -2, 11, -3, 4, -9, 7, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(3)-1) \left(t(2)^2 t(3)^3-t(2) t(3)^3-t(2)^2 t(3)^2+t(2) t(3)^2-t(3)^2+t(2)^2 t(3)-t(2) t(3)+t(3)+t(2)-1\right)}{\sqrt{t(1)} t(2) t(3)^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^9+3 q^8-6 q^7+9 q^6-11 q^5+13 q^4-11 q^3+11 q^2-7 q+5-2 q^{-1} + q^{-2} }[/math] (db) |
| Signature | 4 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^6 a^{-6} -4 z^4 a^{-6} -5 z^2 a^{-6} -3 a^{-6} +z^8 a^{-4} +6 z^6 a^{-4} +14 z^4 a^{-4} +17 z^2 a^{-4} + a^{-4} z^{-2} +9 a^{-4} -2 z^6 a^{-2} -10 z^4 a^{-2} -16 z^2 a^{-2} -2 a^{-2} z^{-2} -10 a^{-2} +z^4+4 z^2+ z^{-2} +4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^{10} a^{-2} +z^{10} a^{-4} +2 z^9 a^{-1} +7 z^9 a^{-3} +5 z^9 a^{-5} +2 z^8 a^{-2} +10 z^8 a^{-4} +9 z^8 a^{-6} +z^8-10 z^7 a^{-1} -28 z^7 a^{-3} -8 z^7 a^{-5} +10 z^7 a^{-7} -29 z^6 a^{-2} -54 z^6 a^{-4} -22 z^6 a^{-6} +9 z^6 a^{-8} -6 z^6+15 z^5 a^{-1} +27 z^5 a^{-3} -13 z^5 a^{-5} -19 z^5 a^{-7} +6 z^5 a^{-9} +61 z^4 a^{-2} +76 z^4 a^{-4} +12 z^4 a^{-6} -13 z^4 a^{-8} +3 z^4 a^{-10} +13 z^4-5 z^3 a^{-1} +3 z^3 a^{-3} +19 z^3 a^{-5} +6 z^3 a^{-7} -4 z^3 a^{-9} +z^3 a^{-11} -47 z^2 a^{-2} -44 z^2 a^{-4} -5 z^2 a^{-6} +5 z^2 a^{-8} -13 z^2-4 z a^{-1} -9 z a^{-3} -6 z a^{-5} +z a^{-9} +15 a^{-2} +13 a^{-4} +2 a^{-6} - a^{-8} +6+2 a^{-1} z^{-1} +2 a^{-3} z^{-1} -2 a^{-2} z^{-2} - a^{-4} z^{-2} - z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



