L11a34
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a34's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X18,11,19,12 X16,7,17,8 X8,17,9,18 X22,15,5,16 X12,21,13,22 X20,13,21,14 X14,19,15,20 X2536 X4,9,1,10 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -5, 11, -2, 3, -7, 8, -9, 6, -4, 5, -3, 9, -8, 7, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{4 u v^4-8 u v^3+8 u v^2-5 u v+2 u+2 v^5-5 v^4+8 v^3-8 v^2+4 v}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{27/2}}-\frac{2}{q^{25/2}}+\frac{6}{q^{23/2}}-\frac{10}{q^{21/2}}+\frac{14}{q^{19/2}}-\frac{18}{q^{17/2}}+\frac{17}{q^{15/2}}-\frac{16}{q^{13/2}}+\frac{12}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z a^{13}-2 a^{13} z^{-1} +3 z^3 a^{11}+7 z a^{11}+4 a^{11} z^{-1} -2 z^5 a^9-4 z^3 a^9-2 z a^9-a^9 z^{-1} -3 z^5 a^7-8 z^3 a^7-5 z a^7-a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{16} z^6-4 a^{16} z^4+5 a^{16} z^2-2 a^{16}+2 a^{15} z^7-5 a^{15} z^5+2 a^{15} z^3+a^{15} z+3 a^{14} z^8-6 a^{14} z^6+2 a^{14} z^4+a^{14} z^2-a^{14}+3 a^{13} z^9-5 a^{13} z^7+6 a^{13} z^5-11 a^{13} z^3+9 a^{13} z-2 a^{13} z^{-1} +a^{12} z^{10}+7 a^{12} z^8-23 a^{12} z^6+32 a^{12} z^4-24 a^{12} z^2+6 a^{12}+7 a^{11} z^9-13 a^{11} z^7+17 a^{11} z^5-22 a^{11} z^3+16 a^{11} z-4 a^{11} z^{-1} +a^{10} z^{10}+10 a^{10} z^8-25 a^{10} z^6+28 a^{10} z^4-18 a^{10} z^2+5 a^{10}+4 a^9 z^9-6 a^9 z^5+3 a^9 z^3+a^9 z-a^9 z^{-1} +6 a^8 z^8-6 a^8 z^6-2 a^8 z^4+3 a^8 z^2-a^8+6 a^7 z^7-11 a^7 z^5+10 a^7 z^3-6 a^7 z+a^7 z^{-1} +3 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-2 a^5 z^3+a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



