L11n232
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n232's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X18,11,19,12 X8,9,1,10 X22,19,9,20 X20,6,21,5 X4,22,5,21 X7,15,8,14 X12,4,13,3 X13,16,14,17 X15,7,16,6 X2,18,3,17 |
| Gauss code | {1, -11, 8, -6, 5, 10, -7, -3}, {3, -1, 2, -8, -9, 7, -10, 9, 11, -2, 4, -5, 6, -4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^3 \left(-v^2\right)+2 u^3 v-u^3+u^2 v^2-u^2 v+u^2+u v^3-u v^2+u v-v^3+2 v^2-v}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 2 q^{9/2}-4 q^{7/2}+4 q^{5/2}-\frac{1}{q^{5/2}}-5 q^{3/2}+\frac{3}{q^{3/2}}-q^{11/2}+4 \sqrt{q}-\frac{4}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-1} +a z^3-3 z^3 a^{-1} +2 z^3 a^{-3} +a z-2 z a^{-1} +4 z a^{-3} -z a^{-5} + a^{-3} z^{-1} - a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{-5} -5 z^5 a^{-5} +8 z^3 a^{-5} -5 z a^{-5} + a^{-5} z^{-1} +2 z^8 a^{-4} -9 z^6 a^{-4} +10 z^4 a^{-4} -2 z^2 a^{-4} - a^{-4} +z^9 a^{-3} -z^7 a^{-3} -11 z^5 a^{-3} +18 z^3 a^{-3} -8 z a^{-3} + a^{-3} z^{-1} +4 z^8 a^{-2} -17 z^6 a^{-2} +17 z^4 a^{-2} +a^2 z^2-4 z^2 a^{-2} +z^9 a^{-1} +a z^7-z^7 a^{-1} -4 a z^5-10 z^5 a^{-1} +5 a z^3+15 z^3 a^{-1} -2 a z-5 z a^{-1} +2 z^8-8 z^6+7 z^4-z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



