L11n179
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n179's Link Presentations]
| Planar diagram presentation | X8192 X3,10,4,11 X16,7,17,8 X20,10,21,9 X22,15,7,16 X14,6,15,5 X18,14,19,13 X12,20,13,19 X11,4,12,5 X6,18,1,17 X2,21,3,22 |
| Gauss code | {1, -11, -2, 9, 6, -10}, {3, -1, 4, 2, -9, -8, 7, -6, 5, -3, 10, -7, 8, -4, 11, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(2)^4-t(2)^4+t(1)^2 t(2)^3-4 t(1) t(2)^3+2 t(2)^3-2 t(1)^2 t(2)^2+7 t(1) t(2)^2-2 t(2)^2+2 t(1)^2 t(2)-4 t(1) t(2)+t(2)-t(1)^2+t(1)}{t(1) t(2)^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{6}{q^{9/2}}+\frac{8}{q^{7/2}}+q^{5/2}-\frac{10}{q^{5/2}}-4 q^{3/2}+\frac{10}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{3}{q^{11/2}}+6 \sqrt{q}-\frac{9}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^5+z a^5+a^5 z^{-1} -z^5 a^3-2 z^3 a^3-3 z a^3-2 a^3 z^{-1} -z^5 a-z^3 a+z a+2 a z^{-1} +z^3 a^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^3 z^9-a z^9-4 a^4 z^8-5 a^2 z^8-z^8-5 a^5 z^7-5 a^3 z^7-3 a^6 z^6+9 a^4 z^6+12 a^2 z^6-a^7 z^5+13 a^5 z^5+18 a^3 z^5-4 z^5 a^{-1} +6 a^6 z^4-8 a^4 z^4-15 a^2 z^4-z^4 a^{-2} -2 z^4+2 a^7 z^3-11 a^5 z^3-23 a^3 z^3-5 a z^3+5 z^3 a^{-1} -a^6 z^2+3 a^4 z^2+6 a^2 z^2+z^2 a^{-2} +3 z^2+5 a^5 z+11 a^3 z+7 a z+z a^{-1} -a^2-a^5 z^{-1} -2 a^3 z^{-1} -2 a z^{-1} - a^{-1} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



