L10n24
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n24's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X13,18,14,19 X9,17,10,16 X17,9,18,8 X15,20,16,5 X19,14,20,15 X2536 X4,12,1,11 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, 6, -5, -2, 10, -3, -4, 8, -7, 5, -6, 4, -8, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1) \left(v^2+1\right)}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-3} +2 z a^{-3} -z^5 a^{-1} +a z^3-4 z^3 a^{-1} +2 a z-4 z a^{-1} +a z^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-4} -4 z^4 a^{-4} +3 z^2 a^{-4} +2 z^7 a^{-3} -9 z^5 a^{-3} +10 z^3 a^{-3} -4 z a^{-3} +z^8 a^{-2} -3 z^6 a^{-2} -z^4 a^{-2} +a^2 z^2+3 z^2 a^{-2} +a z^7+3 z^7 a^{-1} -5 a z^5-14 z^5 a^{-1} +8 a z^3+18 z^3 a^{-1} -4 a z-8 z a^{-1} +a z^{-1} + a^{-1} z^{-1} +z^8-4 z^6+3 z^4+z^2-1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



