L11a252

From Knot Atlas
Revision as of 12:21, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a251.gif

L11a251

L11a253.gif

L11a253

L11a252.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a252 at Knotilus!


Link Presentations

[edit Notes on L11a252's Link Presentations]

Planar diagram presentation X10,1,11,2 X20,13,21,14 X12,4,13,3 X2,19,3,20 X14,5,15,6 X16,7,17,8 X8,9,1,10 X18,12,19,11 X6,15,7,16 X22,18,9,17 X4,22,5,21
Gauss code {1, -4, 3, -11, 5, -9, 6, -7}, {7, -1, 8, -3, 2, -5, 9, -6, 10, -8, 4, -2, 11, -10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a252 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
6           11
4          3 -3
2         51 4
0        73  -4
-2       105   5
-4      108    -2
-6     109     1
-8    710      3
-10   610       -4
-12  38        5
-14 15         -4
-16 3          3
-181           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a251.gif

L11a251

L11a253.gif

L11a253