L11n113

From Knot Atlas
Revision as of 12:22, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n112.gif

L11n112

L11n114.gif

L11n114

L11n113.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n113 at Knotilus!


Link Presentations

[edit Notes on L11n113's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,18,8,19 X19,22,20,5 X9,21,10,20 X21,9,22,8 X16,11,17,12 X14,17,15,18 X10,15,11,16 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {10, -1, -3, 6, -5, -9, 7, -2, 11, -8, 9, -7, 8, 3, -4, 5, -6, 4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n113 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
4         22
2        2 -2
0       62 4
-2      64  -2
-4     54   1
-6    56    1
-8   45     -1
-10  25      3
-12 14       -3
-14 2        2
-161         -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n112.gif

L11n112

L11n114.gif

L11n114