L11n442

From Knot Atlas
Revision as of 12:22, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n441.gif

L11n441

L11n443.gif

L11n443

L11n442.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n442 at Knotilus!


Link Presentations

[edit Notes on L11n442's Link Presentations]

Planar diagram presentation X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,17,8,16 X15,5,16,8 X13,20,14,21 X19,15,20,22 X21,12,22,13 X17,9,18,14
Gauss code {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10, -8, 11}, {-7, 6, -11, 3, -9, 8, -10, 9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n442 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-101234567χ
16         1-1
14        2 2
12       41 -3
10      62  4
8     55   0
6    95    4
4   48     4
2  66      0
0 27       5
-213        -2
-43         3
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n441.gif

L11n441

L11n443.gif

L11n443