L11n445
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n445's Link Presentations]
| Planar diagram presentation | X6172 X3,11,4,10 X7,15,8,14 X13,5,14,8 X11,18,12,19 X19,17,20,22 X21,9,22,16 X15,21,16,20 X17,12,18,13 X2536 X9,1,10,4 |
| Gauss code | {1, -10, -2, 11}, {10, -1, -3, 4}, {-9, 5, -6, 8, -7, 6}, {-11, 2, -5, 9, -4, 3, -8, 7} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(3)-1) (t(4)-1) \left(t(4)^2+t(1) t(4)-2 t(1) t(2) t(4)+t(2) t(4)-2 t(4)+t(1) t(2)\right)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} t(4)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -10 q^{9/2}+9 q^{7/2}-12 q^{5/2}+9 q^{3/2}-\frac{2}{q^{3/2}}+q^{15/2}-3 q^{13/2}+6 q^{11/2}-9 \sqrt{q}+\frac{3}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^{-7} + a^{-7} z^{-1} -3 z^3 a^{-5} - a^{-5} z^{-3} -6 z a^{-5} -5 a^{-5} z^{-1} +2 z^5 a^{-3} +7 z^3 a^{-3} +3 a^{-3} z^{-3} +12 z a^{-3} +10 a^{-3} z^{-1} -4 z^3 a^{-1} +a z^{-3} -3 a^{-1} z^{-3} +2 a z-9 z a^{-1} +3 a z^{-1} -9 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^9 a^{-3} -z^9 a^{-5} -4 z^8 a^{-2} -7 z^8 a^{-4} -3 z^8 a^{-6} -4 z^7 a^{-1} -10 z^7 a^{-3} -9 z^7 a^{-5} -3 z^7 a^{-7} +8 z^6 a^{-2} +13 z^6 a^{-4} +3 z^6 a^{-6} -z^6 a^{-8} -z^6+14 z^5 a^{-1} +43 z^5 a^{-3} +38 z^5 a^{-5} +9 z^5 a^{-7} +9 z^4 a^{-4} +12 z^4 a^{-6} +3 z^4 a^{-8} -3 a z^3-33 z^3 a^{-1} -66 z^3 a^{-3} -45 z^3 a^{-5} -9 z^3 a^{-7} -24 z^2 a^{-2} -30 z^2 a^{-4} -14 z^2 a^{-6} -3 z^2 a^{-8} -5 z^2+7 a z+30 z a^{-1} +48 z a^{-3} +31 z a^{-5} +6 z a^{-7} +21 a^{-2} +18 a^{-4} +6 a^{-6} + a^{-8} +9-5 a z^{-1} -14 a^{-1} z^{-1} -18 a^{-3} z^{-1} -11 a^{-5} z^{-1} -2 a^{-7} z^{-1} -6 a^{-2} z^{-2} -3 a^{-4} z^{-2} -3 z^{-2} +a z^{-3} +3 a^{-1} z^{-3} +3 a^{-3} z^{-3} + a^{-5} z^{-3} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



