L11a264

From Knot Atlas
Revision as of 12:25, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a263.gif

L11a263

L11a265.gif

L11a265

L11a264.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a264 at Knotilus!


Link Presentations

[edit Notes on L11a264's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X22,12,9,11 X14,6,15,5 X2,9,3,10 X4,14,5,13 X20,17,21,18 X8,16,1,15 X6,20,7,19 X18,8,19,7 X16,21,17,22
Gauss code {1, -5, 2, -6, 4, -9, 10, -8}, {5, -1, 3, -2, 6, -4, 8, -11, 7, -10, 9, -7, 11, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a264 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-4-3-2-101234567χ
18           1-1
16          2 2
14         41 -3
12        62  4
10       75   -2
8      85    3
6     67     1
4    68      -2
2   47       3
0  25        -3
-2 14         3
-4 2          -2
-61           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a263.gif

L11a263

L11a265.gif

L11a265