L11a432
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a432's Link Presentations]
| Planar diagram presentation | X6172 X14,6,15,5 X8493 X2,16,3,15 X16,7,17,8 X18,14,19,13 X20,9,21,10 X12,19,5,20 X22,11,13,12 X10,21,11,22 X4,17,1,18 |
| Gauss code | {1, -4, 3, -11}, {2, -1, 5, -3, 7, -10, 9, -8}, {6, -2, 4, -5, 11, -6, 8, -7, 10, -9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(3) t(2)-t(2)+1) (t(2) t(3)-t(3)+1)}{\sqrt{t(1)} t(2)^{3/2} t(3)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-8} +5 q^{-7} -10 q^{-6} +16 q^{-5} -20 q^{-4} +q^3+24 q^{-3} -4 q^2-22 q^{-2} +8 q+20 q^{-1} -13} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+6 a^4 z^4-9 a^2 z^4+3 z^4-a^6 z^2+3 a^4 z^2-4 a^2 z^2+2 z^2+a^6-4 a^4+3 a^2+a^6 z^{-2} -2 a^4 z^{-2} +a^2 z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^9 z^5+5 a^8 z^6-5 a^8 z^4+a^8+10 a^7 z^7-14 a^7 z^5+3 a^7 z^3+11 a^6 z^8-14 a^6 z^6+3 a^6 z^4-2 a^6 z^2+a^6 z^{-2} -a^6+7 a^5 z^9+a^5 z^7-16 a^5 z^5+5 a^5 z^3+4 a^5 z-2 a^5 z^{-1} +2 a^4 z^{10}+17 a^4 z^8-44 a^4 z^6+36 a^4 z^4-9 a^4 z^2+2 a^4 z^{-2} -4 a^4+13 a^3 z^9-22 a^3 z^7+7 a^3 z^5+3 a^3 z^3+4 a^3 z-2 a^3 z^{-1} +2 a^2 z^{10}+13 a^2 z^8-45 a^2 z^6+z^6 a^{-2} +47 a^2 z^4-2 z^4 a^{-2} -13 a^2 z^2+a^2 z^{-2} -3 a^2+6 a z^9-9 a z^7+4 z^7 a^{-1} -2 a z^5-10 z^5 a^{-1} +6 a z^3+5 z^3 a^{-1} +7 z^8-19 z^6+17 z^4-6 z^2} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



