L11n360

From Knot Atlas
Revision as of 12:27, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n359.gif

L11n359

L11n361.gif

L11n361

L11n360.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n360 at Knotilus!


Link Presentations

[edit Notes on L11n360's Link Presentations]

Planar diagram presentation X6172 X12,7,13,8 X4,13,1,14 X5,18,6,19 X8493 X9,21,10,20 X19,11,20,10 X17,14,18,15 X15,22,16,17 X21,16,22,5 X2,12,3,11
Gauss code {1, -11, 5, -3}, {-8, 4, -7, 6, -10, 9}, {-4, -1, 2, -5, -6, 7, 11, -2, 3, 8, -9, 10}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n360 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5          1 -1
3         21 1
1       121  0
-1      142   1
-3     123    2
-5    142     1
-7   113      3
-9   11       0
-11 111        1
-13            0
-151           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n359.gif

L11n359

L11n361.gif

L11n361