L11a484
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a484's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X12,6,13,5 X8493 X16,10,17,9 X22,17,19,18 X20,12,21,11 X10,20,11,19 X18,21,5,22 X2,14,3,13 |
| Gauss code | {1, -11, 5, -3}, {9, -8, 10, -7}, {4, -1, 2, -5, 6, -9, 8, -4, 11, -2, 3, -6, 7, -10} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) (w-1)^3 \left(w^2+1\right)}{\sqrt{u} \sqrt{v} w^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+8 q^5-13 q^4- q^{-4} +18 q^3+4 q^{-3} -20 q^2-8 q^{-2} +21 q+14 q^{-1} -16 }[/math] (db) |
| Signature | 2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^6 a^{-4} +3 z^4 a^{-4} +2 z^2 a^{-4} -z^8 a^{-2} -5 z^6 a^{-2} -a^2 z^4-9 z^4 a^{-2} -2 a^2 z^2-6 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +2 z^6+7 z^4+6 z^2-2 z^{-2} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^4 a^{-8} +4 z^5 a^{-7} -2 z^3 a^{-7} +8 z^6 a^{-6} -7 z^4 a^{-6} +z^2 a^{-6} +11 z^7 a^{-5} -13 z^5 a^{-5} +4 z^3 a^{-5} -z a^{-5} +12 z^8 a^{-4} -20 z^6 a^{-4} +12 z^4 a^{-4} -5 z^2 a^{-4} +8 z^9 a^{-3} +a^3 z^7-6 z^7 a^{-3} -3 a^3 z^5-18 z^5 a^{-3} +3 a^3 z^3+20 z^3 a^{-3} -a^3 z-4 z a^{-3} +2 z^{10} a^{-2} +4 a^2 z^8+18 z^8 a^{-2} -14 a^2 z^6-67 z^6 a^{-2} +16 a^2 z^4+66 z^4 a^{-2} -8 a^2 z^2-21 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} +5 a z^9+13 z^9 a^{-1} -12 a z^7-30 z^7 a^{-1} -a z^5+z^5 a^{-1} +12 a z^3+23 z^3 a^{-1} -4 a z-6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^{10}+10 z^8-53 z^6+62 z^4-23 z^2+2 z^{-2} +1 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



