L11n404
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n404's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X11,22,12,19 X10,4,11,3 X5,21,6,20 X21,5,22,18 X19,12,20,13 X2,14,3,13 |
| Gauss code | {1, -11, 7, -5}, {-10, 8, -9, 6}, {-8, -1, 2, -4, 3, -7, -6, 10, 11, -2, 4, -3, 5, 9} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0} (db) |
| Jones polynomial | (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^6 \left(-z^4\right)-4 a^6 z^2-a^6 z^{-2} -4 a^6+a^4 z^6+7 a^4 z^4+16 a^4 z^2+4 a^4 z^{-2} +13 a^4-a^2 z^6-7 a^2 z^4-16 a^2 z^2-5 a^2 z^{-2} -14 a^2+z^4+4 z^2+2 z^{-2} +5} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^9-4 z^3 a^9+2 z a^9+z^6 a^8-4 z^4 a^8+2 z^2 a^8+z^7 a^7-5 z^5 a^7+6 z^3 a^7-4 z a^7+a^7 z^{-1} +z^8 a^6-6 z^6 a^6+10 z^4 a^6-10 z^2 a^6-a^6 z^{-2} +7 a^6+3 z^7 a^5-21 z^5 a^5+40 z^3 a^5-25 z a^5+5 a^5 z^{-1} +3 z^8 a^4-22 z^6 a^4+50 z^4 a^4-49 z^2 a^4-4 a^4 z^{-2} +22 a^4+z^9 a^3-4 z^7 a^3-7 z^5 a^3+34 z^3 a^3-31 z a^3+9 a^3 z^{-1} +3 z^8 a^2-22 z^6 a^2+52 z^4 a^2-53 z^2 a^2-5 a^2 z^{-2} +23 a^2+z^9 a-6 z^7 a+8 z^5 a+4 z^3 a-12 z a+5 a z^{-1} +z^8-7 z^6+16 z^4-16 z^2-2 z^{-2} +9} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



