L11n105

From Knot Atlas
Revision as of 12:30, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n104.gif

L11n104

L11n106.gif

L11n106

L11n105.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n105 at Knotilus!


Link Presentations

[edit Notes on L11n105's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X7,16,8,17 X17,22,18,5 X13,18,14,19 X9,21,10,20 X19,14,20,15 X21,9,22,8 X15,10,16,11 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {10, -1, -3, 8, -6, 9, -11, 2, -5, 7, -9, 3, -4, 5, -7, 6, -8, 4}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n105 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-5-4-3-2-101234χ
6         11
4        2 -2
2       41 3
0      42  -2
-2     74   3
-4    56    1
-6   55     0
-8  35      2
-10 25       -3
-12 3        3
-142         -2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n104.gif

L11n104

L11n106.gif

L11n106