L11a172
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a172's Link Presentations]
| Planar diagram presentation | X8192 X2,9,3,10 X10,3,11,4 X16,8,17,7 X22,16,7,15 X6,21,1,22 X18,11,19,12 X14,6,15,5 X20,13,21,14 X12,19,13,20 X4,18,5,17 |
| Gauss code | {1, -2, 3, -11, 8, -6}, {4, -1, 2, -3, 7, -10, 9, -8, 5, -4, 11, -7, 10, -9, 6, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(1)^2 t(2)^6-t(1) t(2)^6-2 t(1)^2 t(2)^5+3 t(1) t(2)^5-t(2)^5+3 t(1)^2 t(2)^4-5 t(1) t(2)^4+2 t(2)^4-3 t(1)^2 t(2)^3+5 t(1) t(2)^3-3 t(2)^3+2 t(1)^2 t(2)^2-5 t(1) t(2)^2+3 t(2)^2-t(1)^2 t(2)+3 t(1) t(2)-2 t(2)-t(1)+1}{t(1) t(2)^3} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{13}{q^{9/2}}-\frac{15}{q^{7/2}}-q^{5/2}+\frac{14}{q^{5/2}}+3 q^{3/2}-\frac{13}{q^{3/2}}+\frac{1}{q^{17/2}}-\frac{3}{q^{15/2}}+\frac{6}{q^{13/2}}-\frac{10}{q^{11/2}}-6 \sqrt{q}+\frac{9}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^5 z^7-5 a^5 z^5-8 a^5 z^3-4 a^5 z+a^3 z^9+7 a^3 z^7+18 a^3 z^5+20 a^3 z^3+8 a^3 z+a^3 z^{-1} -a z^7-5 a z^5-8 a z^3-5 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-a^{10} z^2+3 a^9 z^5-3 a^9 z^3+5 a^8 z^6-5 a^8 z^4+a^8 z^2+7 a^7 z^7-12 a^7 z^5+10 a^7 z^3-2 a^7 z+7 a^6 z^8-14 a^6 z^6+12 a^6 z^4-2 a^6 z^2+5 a^5 z^9-9 a^5 z^7+5 a^5 z^5-2 a^5 z^3+2 a^5 z+2 a^4 z^{10}+2 a^4 z^8-16 a^4 z^6+16 a^4 z^4-6 a^4 z^2+9 a^3 z^9-33 a^3 z^7+46 a^3 z^5-36 a^3 z^3+11 a^3 z-a^3 z^{-1} +2 a^2 z^{10}-2 a^2 z^8-9 a^2 z^6+11 a^2 z^4-5 a^2 z^2+a^2+4 a z^9-16 a z^7+z^7 a^{-1} +22 a z^5-4 z^5 a^{-1} -17 a z^3+4 z^3 a^{-1} +7 a z-a z^{-1} +3 z^8-12 z^6+13 z^4-3 z^2 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



