L11a418
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a418's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X18,10,19,9 X16,8,17,7 X22,14,11,13 X20,16,21,15 X10,18,5,17 X8,20,9,19 X14,22,15,21 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, -8, 3, -7}, {11, -2, 5, -9, 6, -4, 7, -3, 8, -6, 9, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-2 t(1) t(2)^2+2 t(1) t(3) t(2)^2-3 t(3) t(2)^2+2 t(2)^2+2 t(1) t(3)^2 t(2)-3 t(3)^2 t(2)+3 t(1) t(2)-5 t(1) t(3) t(2)+5 t(3) t(2)-2 t(2)-2 t(1) t(3)^2+2 t(3)^2+3 t(1) t(3)-2 t(3)}{\sqrt{t(1)} t(2) t(3)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^7+3 q^6-5 q^5+8 q^4-10 q^3+12 q^2-11 q+11-7 q^{-1} +5 q^{-2} -2 q^{-3} + q^{-4} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^4-2 z^2 a^2+a^2 z^{-2} +z^4-2 z^2-2 z^{-2} -3+2 z^4 a^{-2} +2 z^2 a^{-2} + a^{-2} z^{-2} +2 a^{-2} +z^4 a^{-4} -z^2 a^{-6} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^7 a^{-7} -4 z^5 a^{-7} +4 z^3 a^{-7} +3 z^8 a^{-6} -13 z^6 a^{-6} +16 z^4 a^{-6} -5 z^2 a^{-6} +3 z^9 a^{-5} -11 z^7 a^{-5} +11 z^5 a^{-5} -4 z^3 a^{-5} +z^{10} a^{-4} +2 z^8 a^{-4} -15 z^6 a^{-4} +a^4 z^4+14 z^4 a^{-4} -2 a^4 z^2-3 z^2 a^{-4} +a^4+5 z^9 a^{-3} -14 z^7 a^{-3} +2 a^3 z^5+10 z^5 a^{-3} -2 a^3 z^3-4 z^3 a^{-3} +z^{10} a^{-2} +2 z^8 a^{-2} +3 a^2 z^6-6 z^6 a^{-2} -3 a^2 z^4-4 z^4 a^{-2} +3 a^2 z^2+9 z^2 a^{-2} +a^2 z^{-2} + a^{-2} z^{-2} -3 a^2-5 a^{-2} +2 z^9 a^{-1} +3 a z^7+z^7 a^{-1} -7 z^5 a^{-1} -5 a z^3+z^3 a^{-1} +6 a z+6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +3 z^8-z^6-6 z^4+12 z^2+2 z^{-2} -8 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



