L11n408

From Knot Atlas
Revision as of 12:32, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n407.gif

L11n407

L11n409.gif

L11n409

L11n408.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n408 at Knotilus!


Link Presentations

[edit Notes on L11n408's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X7,16,8,17 X17,19,18,22 X11,20,12,21 X19,10,20,11 X21,5,22,18 X9,14,10,15 X15,8,16,9 X2536 X4,14,1,13
Gauss code {1, -10, 2, -11}, {-6, 5, -7, 4}, {10, -1, -3, 9, -8, 6, -5, -2, 11, 8, -9, 3, -4, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n408 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 0 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
7           11
5            0
3         11 0
1       41   3
-1      241   1
-3     222    2
-5    22      0
-7   221      1
-9  12        1
-11 12         -1
-13 1          1
-151           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n407.gif

L11n407

L11n409.gif

L11n409