L11n228
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n228's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X2,11,3,12 X12,3,13,4 X17,9,18,22 X9,21,10,20 X6,13,7,14 X14,7,15,8 X8,15,1,16 X19,5,20,4 X5,19,6,18 X21,17,22,16 |
| Gauss code | {1, -2, 3, 9, -10, -6, 7, -8}, {-5, -1, 2, -3, 6, -7, 8, 11, -4, 10, -9, 5, -11, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u^3 v^3-u^3 v^2+u^2 v^3-u^2 v^2+2 u^2 v-u^2-u v^3+2 u v^2-u v+u-v+1}{u^{3/2} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{3}{q^{9/2}}+q^{7/2}+\frac{3}{q^{7/2}}-q^{5/2}-\frac{3}{q^{5/2}}+q^{3/2}+\frac{2}{q^{3/2}}-\frac{1}{q^{13/2}}+\frac{2}{q^{11/2}}-\sqrt{q}-\frac{2}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^5 z^3+a^5 z+2 a^3 z^3+4 a^3 z+2 a^3 z^{-1} -a z^7-7 a z^5+z^5 a^{-1} -15 a z^3+5 z^3 a^{-1} -13 a z+6 z a^{-1} -3 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a z^9-z^9 a^{-1} -a^2 z^8-z^8 a^{-2} -2 z^8-a^5 z^7+8 a z^7+7 z^7 a^{-1} -2 a^6 z^6-2 a^4 z^6+8 a^2 z^6+7 z^6 a^{-2} +15 z^6-a^7 z^5+a^5 z^5-2 a^3 z^5-19 a z^5-15 z^5 a^{-1} +6 a^6 z^4+4 a^4 z^4-18 a^2 z^4-15 z^4 a^{-2} -31 z^4+3 a^7 z^3+3 a^5 z^3+6 a^3 z^3+20 a z^3+14 z^3 a^{-1} -3 a^6 z^2+12 a^2 z^2+11 z^2 a^{-2} +20 z^2-2 a^7 z-6 a^3 z-15 a z-7 z a^{-1} -3 a^2- a^{-2} -3+2 a^3 z^{-1} +3 a z^{-1} + a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



