L10n112

From Knot Atlas
Revision as of 12:32, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n111.gif

L10n111

L10n113.gif

L10n113

L10n112.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n112 at Knotilus!


Link Presentations

[edit Notes on L10n112's Link Presentations]

Planar diagram presentation X6172 X2536 X11,19,12,18 X3,11,4,10 X9,1,10,4 X7,15,8,14 X13,5,14,8 X15,17,16,20 X19,13,20,16 X17,9,18,12
Gauss code {1, -2, -4, 5}, {2, -1, -6, 7}, {-5, 4, -3, 10}, {-7, 6, -8, 9}, {-10, 3, -9, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10n112 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
012345678χ
19        11
17       110
15      5  5
13      1  1
11    115   6
9   410    6
7  61     5
51 4      5
356       -1
14        4
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n111.gif

L10n111

L10n113.gif

L10n113