L11n296
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n296's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X15,20,16,21 X14,8,15,7 X10,22,5,21 X18,11,19,12 X9,17,10,16 X22,17,11,18 X19,9,20,8 X2536 X4,14,1,13 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 4, 9, -7, -5}, {6, -2, 11, -4, -3, 7, 8, -6, -9, 3, 5, -8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{u v^2 w+u v w^4-u v w^3+u v w^2-2 u v w+u v-u w^4+u w^3-v^2 w+v^2-v w^4+2 v w^3-v w^2+v w-v-w^3}{\sqrt{u} v w^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^6-2 q^5+4 q^4-4 q^3+7 q^2-5 q+6-4 q^{-1} +2 q^{-2} - q^{-3} }[/math] (db) |
| Signature | 0 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^4 a^{-4} +3 z^2 a^{-4} +2 a^{-4} z^{-2} +3 a^{-4} -z^6 a^{-2} -5 z^4 a^{-2} -a^2 z^2-10 z^2 a^{-2} -a^2 z^{-2} -5 a^{-2} z^{-2} -2 a^2-10 a^{-2} +2 z^4+7 z^2+4 z^{-2} +9 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^9 a^{-1} +z^9 a^{-3} +5 z^8 a^{-2} +3 z^8 a^{-4} +2 z^8+a z^7-z^7 a^{-1} +2 z^7 a^{-5} -25 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -10 z^6-4 a z^5-10 z^5 a^{-1} -13 z^5 a^{-3} -7 z^5 a^{-5} +2 a^2 z^4+48 z^4 a^{-2} +23 z^4 a^{-4} -4 z^4 a^{-6} +23 z^4+a^3 z^3+12 a z^3+30 z^3 a^{-1} +23 z^3 a^{-3} +4 z^3 a^{-5} -3 a^2 z^2-44 z^2 a^{-2} -22 z^2 a^{-4} +3 z^2 a^{-6} -22 z^2-2 a^3 z-13 a z-27 z a^{-1} -16 z a^{-3} +2 a^2+20 a^{-2} +10 a^{-4} +13+a^3 z^{-1} +5 a z^{-1} +9 a^{-1} z^{-1} +5 a^{-3} z^{-1} -a^2 z^{-2} -5 a^{-2} z^{-2} -2 a^{-4} z^{-2} -4 z^{-2} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



