L10a62
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a62's Link Presentations]
| Planar diagram presentation | X8192 X10,4,11,3 X20,10,7,9 X2738 X16,12,17,11 X14,5,15,6 X4,15,5,16 X18,14,19,13 X12,18,13,17 X6,20,1,19 |
| Gauss code | {1, -4, 2, -7, 6, -10}, {4, -1, 3, -2, 5, -9, 8, -6, 7, -5, 9, -8, 10, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u^2 v^4-2 u^2 v^3+2 u^2 v^2-2 u^2 v+u^2-2 u v^4+3 u v^3-3 u v^2+3 u v-2 u+v^4-2 v^3+2 v^2-2 v+1}{u v^2} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 8 q^{9/2}-9 q^{7/2}+9 q^{5/2}-\frac{1}{q^{5/2}}-9 q^{3/2}+\frac{2}{q^{3/2}}-q^{15/2}+3 q^{13/2}-5 q^{11/2}+6 \sqrt{q}-\frac{5}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-5} -3 z^3 a^{-5} -2 z a^{-5} +z^7 a^{-3} +5 z^5 a^{-3} +9 z^3 a^{-3} +7 z a^{-3} + a^{-3} z^{-1} -2 z^5 a^{-1} +a z^3-8 z^3 a^{-1} +3 a z-9 z a^{-1} +2 a z^{-1} -3 a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^3 a^{-9} +3 z^4 a^{-8} -z^2 a^{-8} +5 z^5 a^{-7} -3 z^3 a^{-7} +7 z^6 a^{-6} -10 z^4 a^{-6} +4 z^2 a^{-6} +7 z^7 a^{-5} -14 z^5 a^{-5} +9 z^3 a^{-5} -4 z a^{-5} +4 z^8 a^{-4} -3 z^6 a^{-4} -13 z^4 a^{-4} +11 z^2 a^{-4} - a^{-4} +z^9 a^{-3} +8 z^7 a^{-3} -35 z^5 a^{-3} +36 z^3 a^{-3} -13 z a^{-3} + a^{-3} z^{-1} +6 z^8 a^{-2} -18 z^6 a^{-2} +8 z^4 a^{-2} +7 z^2 a^{-2} -3 a^{-2} +z^9 a^{-1} +a z^7+2 z^7 a^{-1} -5 a z^5-21 z^5 a^{-1} +9 a z^3+32 z^3 a^{-1} -7 a z-16 z a^{-1} +2 a z^{-1} +3 a^{-1} z^{-1} +2 z^8-8 z^6+8 z^4+z^2-3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



