L11a265

From Knot Atlas
Revision as of 12:34, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11a264.gif

L11a264

L11a266.gif

L11a266

L11a265.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11a265 at Knotilus!


Link Presentations

[edit Notes on L11a265's Link Presentations]

Planar diagram presentation X10,1,11,2 X12,4,13,3 X22,12,9,11 X18,8,19,7 X20,18,21,17 X16,22,17,21 X2,9,3,10 X4,16,5,15 X14,6,15,5 X6,14,7,13 X8,20,1,19
Gauss code {1, -7, 2, -8, 9, -10, 4, -11}, {7, -1, 3, -2, 10, -9, 8, -6, 5, -4, 11, -5, 6, -3}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11a265 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-10123456789χ
22           1-1
20          2 2
18         41 -3
16        72  5
14       84   -4
12      97    2
10     99     0
8    78      -1
6   49       5
4  37        -4
2 15         4
0 2          -2
-21           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11a264.gif

L11a264

L11a266.gif

L11a266