L11n410

From Knot Atlas
Revision as of 13:34, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L11n409.gif

L11n409

L11n411.gif

L11n411

L11n410.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n410 at Knotilus!


Link Presentations

[edit Notes on L11n410's Link Presentations]

Planar diagram presentation X6172 X3,13,4,12 X13,22,14,19 X7,20,8,21 X19,10,20,11 X9,16,10,17 X17,14,18,15 X15,8,16,9 X21,18,22,5 X2536 X11,1,12,4
Gauss code {1, -10, -2, 11}, {-5, 4, -9, 3}, {10, -1, -4, 8, -6, 5, -11, 2, -3, 7, -8, 6, -7, 9}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n410 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -4 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-7-6-5-4-3-2-1012χ
1         11
-1        2 -2
-3       51 4
-5      64  -2
-7     83   5
-9    56    1
-11   88     0
-13  47      3
-15 36       -3
-17 4        4
-193         -3
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n409.gif

L11n409

L11n411.gif

L11n411