L11n109
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n109's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X7,18,8,19 X19,22,20,5 X13,20,14,21 X21,14,22,15 X9,16,10,17 X15,10,16,11 X17,8,18,9 X2536 X4,11,1,12 |
| Gauss code | {1, -10, 2, -11}, {10, -1, -3, 9, -7, 8, 11, -2, -5, 6, -8, 7, -9, 3, -4, 5, -6, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 u v^3-u v^2-u v+u+v^3-v^2-v+2}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}-\frac{2}{q^{9/2}}+\frac{1}{q^{11/2}}-\frac{2}{q^{13/2}}+\frac{1}{q^{15/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{21/2}}-\frac{1}{q^{23/2}}+\frac{1}{q^{25/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^{13} z^{-1} +2 z a^{11}+2 a^{11} z^{-1} +z a^9-a^9 z^{-1} -z^5 a^7-4 z^3 a^7-2 z a^7+a^7 z^{-1} -z^5 a^5-4 z^3 a^5-3 z a^5-a^5 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{14}+7 z^6 a^{14}-15 z^4 a^{14}+11 z^2 a^{14}-3 a^{14}-z^9 a^{13}+7 z^7 a^{13}-15 z^5 a^{13}+12 z^3 a^{13}-4 z a^{13}+a^{13} z^{-1} -2 z^8 a^{12}+15 z^6 a^{12}-34 z^4 a^{12}+28 z^2 a^{12}-7 a^{12}-z^9 a^{11}+8 z^7 a^{11}-20 z^5 a^{11}+21 z^3 a^{11}-10 z a^{11}+2 a^{11} z^{-1} -z^8 a^{10}+8 z^6 a^{10}-18 z^4 a^{10}+14 z^2 a^{10}-4 a^{10}+2 z^3 a^9-4 z a^9+a^9 z^{-1} -z^6 a^8+4 z^4 a^8-3 z^2 a^8-z^7 a^7+4 z^5 a^7-3 z^3 a^7-z a^7+a^7 z^{-1} -z^6 a^6+3 z^4 a^6-a^6-z^5 a^5+4 z^3 a^5-3 z a^5+a^5 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



